32 research outputs found

    Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases

    Get PDF
    Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential

    N/OFQ-NOP system in food intake

    No full text
    While lifestyle modifications should be the first-line actions in preventing and treating obesity and eating disorders, pharmacotherapy also provides a necessary tool for the management of these diseases. However, given the limitations of current anti-obesity drugs, innovative treatments that improve efficacy and safety are needed. Since the discovery that the activation of the Nociceptin/Orphanin (N/OFQ) FQ peptide (NOP) receptor by N/OFQ induces an increase of food intake in laboratory animals, and the finding that this effect can be blocked by NOP antagonists, many NOP agonists and antagonists have been synthesized and tested in vitro and in vivo for their potential regulation of feeding behavior. Promising results seem to suggest that the N/OFQergic system may be a potential therapeutic target for the neural control of feeding behavior and related pathologies, especially in binge-like eating behavior
    corecore