10 research outputs found

    Multiple evolutionary trajectories for non-O157 Shiga toxigenic Escherichia coli

    Full text link
    AbstractBackgroundShiga toxigenic Escherichia coli (STEC) is an emerging global pathogen and remains a major cause of food-borne illness with more severe symptoms including hemorrhagic colitis and hemolytic-uremic syndrome. Since the characterization of the archetypal STEC serotype, E. coli O157:H7, more than 250 STEC serotypes have been defined. Many of these non-O157 STEC are associated with clinical cases of equal severity as O157. In this study, we utilize whole genome sequencing of 44 STEC strains from eight serogroups associated with human infection to establish their evolutionary relationships and contrast this with their virulence gene profiles and established typing methods.ResultsOur phylogenomic analysis delineated these STEC strains into seven distinct lineages, each with a characteristic repertoire of virulence factors. Some lineages included commensal or other E. coli pathotypes. Multiple independent acquisitions of the Locus for Enterocyte Effacement were identified, each associated with a distinct repertoire of effector genes. Lineages were inconsistent with O-antigen typing in several instances, consistent with lateral gene transfer within the O-antigen locus. STEC lineages could be defined by the conservation of clustered regularly interspaced short palindromic repeats (CRISPRs), however, no CRISPR profile could differentiate STEC from other E. coli strains. Six genomic regions (ranging from 500 bp - 10 kbp) were found to be conserved across all STEC in this dataset and may dictate interactions with Stx phage lysogeny.ConclusionsThe genomic analyses reported here present non-O157 STEC as a diverse group of pathogenic E. coli emerging from multiple lineages that independently acquired mobile genetic elements that promote pathogenesis.</jats:sec

    Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone.

    Get PDF
    UNLABELLED: Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. IMPORTANCE: DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone

    Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition

    Full text link
    © 2015, American Society for Microbiology. Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo.We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder
    corecore