183 research outputs found

    A composite biomarker using multiparametric magnetic resonance imaging and blood analytes accurately identifies patients with non-alcoholic steatohepatitis and significant fibrosis

    Get PDF
    Non-alcoholic steatohepatitis (NASH) is major health burden lacking effective pharmacological therapies. Clinical trials enrol patients with histologically-defined NAFLD (non-alcoholic fatty liver disease) activity score (NAS) ≥ 4 and Kleiner-Brunt fibrosis stage (F) ≥ 2; however, screen failure rates are often high following biopsy. This study evaluated a non-invasive MRI biomarker, iron-corrected T1 mapping (cT1), as a diagnostic pre-screening biomarker for NASH. In a retrospective analysis of 86 biopsy confirmed NAFLD patients we explored the potential of blood and imaging biomarkers, both in isolation and in combination, to discriminate those who have NAS ≥ 4 and F ≥ 2 from those without. Stepwise logistic regression was performed to select the optimal combination of biomarkers, diagnostic accuracy was determined using area under the receiver operator curve and model validated confirmed with and fivefold cross-validation. Results showed that levels of cT1, AST, GGT and fasting glucose were all good predictors of NAS ≥ 4 and F ≥ 2, and the model identified the combination of cT1-AST-fasting glucose (cTAG) as far superior to any individual biomarker (AUC 0.90 [0.84–0.97]). This highlights the potential utility of the composite cTAG score for screening patients prior to biopsy to identify those suitable for NASH clinical trial enrolment

    The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases.

    Get PDF
    The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations

    Reversibility of liver fibrosis

    Get PDF
    Liver fibrosis, and its end stage cirrhosis are a major cause of morbidity and mortality and therapeutic options are limited. However, the traditional view of liver disease as an irreversible process is obsolete and it is now evident that the development of liver fibrosis is a dynamic and potentially bidirectional process. Spontaneous resolution of scarring is seen in animal models of liver fibrosis and in human trials in which the stimuli responsible for chronic or repeated hepatic inflammation is successfully removed. Key players in the process are hepatic stellate cells, macrophages, MMPs and their inhibitors Timps. It is also evident that in advanced fibrotic liver disease, specific histological features define what is currently described as "irreversible" fibrosis. This includes the development of paucicellular scars enriched in extensively cross-linked matrix components, such as fibrillar collagen and elastin. Our recent work has focused on the role of macrophage metalloelastase (MMP-12) in the turnover of elastin in reversible and irreversible models of fibrosis. We have shown that elastin turnover in liver injury and fibrosis is regulated by macrophages via Mmp-12 expression, activity and ratio to its inhibitor Timp-1. Failure of elastin degradation, together with increased deposition leads to accumulation of elastin in the fibrotic scars

    Switching to letrozole or exemestane improves hot flushes, mood and quality of life in tamoxifen intolerant women

    Get PDF
    We report an open-label, prospective, crossover study involving 184 post-menopausal women experiencing hot flushes on adjuvant tamoxifen (T). Six weeks after switching to an AI, the primary end point, hot flush score, improved by 47.3% (P<0.001) compared to those reported on T. The mean mood rating scale (MRS) score improved by 9.7% (P=0.01). The total mean combined FACT (b+es) score improved from 134.2 (95% CI ±2.96) to 143.5 (95% CI ±2.96 <0.001), and the endocrine subscale improved by 9.8% from 51.73 (95% CI ±1.38) to 57.34 (CI ±1.38, P<0.001). At 6 weeks, significantly more women chose to remain on an AI: 133 (72%), vs 40 (22%) (P<0.001) preferring T. At 3 months, 107 (58%) preferred to remain on an AI, 55(30%) on T, and 22 (12%) withdrew. The overall arthralgia rate at 3 months was 47% on AI and 30% on T (P=0.001). In all 182 (99%) women reported appreciating the opportunity to experience both drugs. These data suggest that if patients suffering significant adverse effects on T are given the opportunity to try an AI, this empowers them to prioritise relative side-effects, improving wellbeing in a significant proportion. These data also highlight the need for hospital follow-up in this intolerant cohort

    Resolving the fibrotic niche of human liver cirrhosis at single-cell level.

    Get PDF
    Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver. We identify a scar-associated TREM2+CD9+ subpopulation of macrophages, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define ACKR1+ and PLVAP+ endothelial cells that expand in cirrhosis, are topographically restricted to the fibrotic niche and enhance the transmigration of leucocytes. Multi-lineage modelling of ligand and receptor interactions between the scar-associated macrophages, endothelial cells and PDGFRα+ collagen-producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides a conceptual framework for the discovery of rational therapeutic targets in liver cirrhosis.Includes Wellcome, BHF, MRC, BBSRC and NIHR

    Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases

    Get PDF
    PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning. METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm. RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function. CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning

    Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases

    Get PDF
    PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning. METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm. RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function. CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning

    Who wants to join preventive trials? – Experience from the Estonian Postmenopausal Hormone Therapy Trial [ISRCTN35338757]

    Get PDF
    BACKGROUND: The interest of patients in participating in randomized clinical trials involving treatments has been widely studied, but there has been much less research on interest in preventive trials. The objective of this study was to find out how many women would be interested in a trial involving postmenopausal hormone therapy (PHT) and how the women's background characteristics and opinions correlated to their interest. METHODS: The data come from recruitment questionnaires (n = 2000) sent to women in Estonia in 1998. A random sample of women aged 45 to 64 was drawn from the Population Registry. The trial is a two-group randomized trial comparing estrogen-progestogen therapy with placebo or no drugs. A brief description of the study was attached to the questionnaires. Women were not told at this stage of the recruitment which group they would be assigned to, however, they were told of the chance to receive either hormone, placebo or no treatment. RESULTS: After two reminders, 1312 women (66%) responded. Eleven percent of the women approached (17% of the respondents) were interested in joining the trial, and 8% wanted more information before deciding. When the 225 women who stated clearly that they were interested in joining and the 553 women who said they were not interested were compared, it was found that interested women were younger and, adjusting for age, that more had given birth; in other respects, the sociodemographic characteristics and health habits of the interested women were similar to those of the non-interested women. The interested women had made more use of more health services, calcium preparations and PHT, they were more often overweight, and more had chronic diseases and reported symptoms. Interested women's opinions on the menopause were more negative, and they favoured PHT more than the non-interested women. CONCLUSION: Unlike the situation described in previous reports on preventive trials, in this case Estonian women interested in participating in a PHT trial were not healthier than other women. This suggests that trials involving PHT are more similar to treatment trials than to preventive trials. In a randomized controlled trial, more information should be obtained from those women who decline to participate

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base
    corecore