4,122 research outputs found

    Exploring Flaring Behaviour on Low Mass Stars, Solar-type Stars and the Sun

    Get PDF
    We report on our project to study the activity in both the Sun and low mass stars. Utilising high cadence, Hα observations of a filament eruption made using the CRISP spectropolarimeter mounted on the Swedish Solar Telescope has allowed us to determine 3D velocity maps of the event. To gain insight into the physical mechanism which drives the event we have qualitatively compared our observation to a 3D MHD reconnection model. Solar-type and low mass stars can be highly active producing flares with energies exceeding erg. Using K2 and TESS data we find no correlation between the number of flares and the rotation phase which is surprising. Our solar flare model can be used to aid our understanding of the origin of flares in other stars. By scaling up our solar model to replicate observed stellar flare energies, we investigate the conditions needed for such high energy flares

    Chlamydia trachomatis Biovar L2 Infection in Women in South Africa

    Get PDF
    We detected Chlamydia trachomatis biovar L2 in vaginal swab specimens of 7 women with vaginal discharge in South Africa. Whole-genome sequencing directly from clinical specimens identified a closely related cluster of strains. The clinical role of this infection in the context of syndromic management should be clarified

    Chlamydia trachomatis Biovar L2 Infection in Women in South Africa

    Get PDF

    Leaf energy balance modelling as a tool to infer habitat preference in the early angiosperms

    Get PDF
    Despite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates: gas exchange rates for extant basal angiosperms are low, as are the reconstructed gas exchange rates for the oldest known angiosperm leaf fossils. Leaves with low transpirational capacity are vulnerable to overheating in full sun, favouring the hypothesis that early angiosperms were limited to the shaded understorey. Here, modelled leaf temperatures are used to examine the thermal tolerance of some of the earliest angiosperms. Our results indicate that small leaf size could have mitigated the low transpirational cooling capacity of many early angiosperms, enabling many species to survive in full sun. We propose that during the earliest phases of the angiosperm leaf record, angiosperms may not have been limited to the understorey, and that some species were able to compete with ferns and gymnosperms in both shaded and sunny habitats, especially in the absence of competition from more rapidly growing and transpiring advanced lineages of angiosperms

    Demanding stories: television coverage of sustainability, climate change and material demand

    Get PDF
    This paper explores the past, present and future role of broadcasting, above all via the medium of television, in shaping how societies talk, think about and act on climate change and sustainability issues. The paper explores these broad themes via a focus on the important but relatively neglected issue of material demand and opportunities for its reduction. It takes the outputs and decision-making of one of the world’s most influential broadcasters, the BBC, as its primary focus. The paper considers these themes in terms of stories, touching on some of the broader societal frames of understanding into which they can be grouped. Media decision-makers and producers from a range of genres frequently return to the centrality of ‘story’ in the development, commissioning and production of an idea. With reference to specific examples of programming, and drawing on interviews with media practitioners, the paper considers the challenges of generating broadcast stories that can inspire engagement in issues around climate change, and specifically material demand. The concluding section proposes actions and approaches that might help to establish material demand reduction as a prominent way of thinking about climate change and environmental issues more widely. This article is part of the themed issue ‘Material demand reduction’

    Clinical biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism

    Get PDF
    Pulmonary surfactant is a multimolecular complex located at the air-water interface within the alveolus to which a range of physical (surface-active properties) and immune functions has been assigned. This complex consists of a surface-active lipid layer (consisting mainly of phospholipids), and of an aqueous subphase. From discrete surfactant sub-fractions one can isolate strongly hydrophobic surf acta nt proteins B (SP-B) and C (SP-C) as well as collectins SP-A and SP-D, which were shown to have specific structural, metabolic, or immune properties. Inborn or acquired abnormalities of the surfactant, qualitative or quantitative in nature, account for a number of human diseases. Beside hyaline membrane disease of the preterm neonate, a cluster of hereditary or acquired lung diseases has been characterized by periodic acid-Schiff-positive material filling the alveoli. From this heterogeneous nosologic group, at least two discrete entities presently emerge. The first is the SP-B deficiency, in which an essentially proteinaceous material is stored within the alveoli, and which represents an autosomal recessive Mendelian entity linked to the SFTPB gene (MIM 1786640). The disease usually generally entails neonatal respiratory distress with rapid fatal outcome, although partial or transient deficiencies have also been observed. The second is alveolar proteinosis, characterized by the storage of a mixed protein and lipid material, which constitutes a relatively heterogeneous clinical and biological syndrome, especially with regard to age at onset (from the neonate through to adulthood) as well as the severity of associated signs. Murine models, with a targeted mutation of the gene encoding granulocyte macrophage colony-stimulating factor (GM-CSF) (Csfgm) or the beta subunit of its receptor (II3rb1) support the hypothesis of an abnormality of surfactant turnover in which the alveolar macrophage is a key player. Apart from SP-B deficiency, in which a near-consensus diagnostic chart can be designed, the ascertainment of other abnormalities of surfactant metabolism is not straightforward. The disentanglement of this disease cluster is however essential to propose specific therapeutic procedures: repeated broncho-alveolar ravages, GM-CSF replacement, bone marrow grafting or lung transplantation

    Global burden of human brucellosis : a systematic review of disease frequency

    Get PDF
    BACKGROUND: This report presents a systematic review of scientific literature published between 1990-2010 relating to the frequency of human brucellosis, commissioned by WHO. The objectives were to identify high quality disease incidence data to complement existing knowledge of the global disease burden and, ultimately, to contribute towards the calculation of a Disability-Adjusted Life Years (DALY) estimate for brucellosis.METHODS/PRINCIPAL FINDINGS: Thirty three databases were searched, identifying 2,385 articles relating to human brucellosis. Based on strict screening criteria, 60 studies were selected for quality assessment, of which only 29 were of sufficient quality for data analysis. Data were only available from 15 countries in the regions of Northern Africa and Middle East, Western Europe, Central and South America, Sub-Saharan Africa, and Central Asia. Half of the studies presented incidence data, six of which were longitudinal prospective studies, and half presented seroprevalence data which were converted to incidence rates. Brucellosis incidence varied widely between, and within, countries. Although study biases cannot be ruled out, demographic, occupational, and socioeconomic factors likely play a role. Aggregated data at national or regional levels do not capture these complexities of disease dynamics and, consequently, at-risk populations or areas may be overlooked. In many brucellosis-endemic countries, health systems are weak and passively-acquired official data underestimate the true disease burden.CONCLUSIONS: High quality research is essential for an accurate assessment of disease burden, particularly in Eastern Europe, the Asia-Pacific, Central and South America and Africa where data are lacking. Providing formal epidemiological and statistical training to researchers is essential for improving study quality. An integrated approach to disease surveillance involving both human health and veterinary services would allow a better understand of disease dynamics at the animal-human interface, as well as a more cost-effective utilisation of resources

    At the crossroads of biomacromolecular research: highlighting the interdisciplinary nature of the field

    Get PDF
    Due to their complexity and wide-ranging utility, biomacromolecular research is an especially interdisciplinary branch of chemistry. It is my goal that the Biomacromolecules subject area of Chemistry Central Journal will parallel this richness and diversity. In this inaugural commentary, I attempt to set the stage for achieving this by highlighting several areas where biomacromolecular research overlaps more traditional chemistry sub-disciplines. Specifically, it is discussed how Materials Science and Biotechnology, Analytical Chemistry, Cell Biology and Chemical Theory are each integral to modern biomacromolecular research. Investigators with reports in any of these areas, or any other dealing with biomacromolecules, are encouraged to submit their research papers to Chemistry Central Journal

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    Time preferences and risk aversion: tests on domain differences

    No full text
    The design and evaluation of environmental policy requires the incorporation of time and risk elements as many environmental outcomes extend over long time periods and involve a large degree of uncertainty. Understanding how individuals discount and evaluate risks with respect to environmental outcomes is a prime component in designing effective environmental policy to address issues of environmental sustainability, such as climate change. Our objective in this study is to investigate whether subjects' time preferences and risk aversion across the monetary domain and the environmental domain differ. Crucially, our experimental design is incentivized: in the monetary domain, time preferences and risk aversion are elicited with real monetary payoffs, whereas in the environmental domain, we elicit time preferences and risk aversion using real (bee-friendly) plants. We find that subjects' time preferences are not significantly different across the monetary and environmental domains. In contrast, subjects' risk aversion is significantly different across the two domains. More specifically, subjects (men and women) exhibit a higher degree of risk aversion in the environmental domain relative to the monetary domain. Finally, we corroborate earlier results, which document that women are more risk averse than men in the monetary domain. We show this finding to, also, hold in the environmental domain
    • …
    corecore