676 research outputs found

    A Branching Time Model of CSP

    Full text link
    I present a branching time model of CSP that is finer than all other models of CSP proposed thus far. It is obtained by taking a semantic equivalence from the linear time - branching time spectrum, namely divergence-preserving coupled similarity, and showing that it is a congruence for the operators of CSP. This equivalence belongs to the bisimulation family of semantic equivalences, in the sense that on transition systems without internal actions it coincides with strong bisimilarity. Nevertheless, enough of the equational laws of CSP remain to obtain a complete axiomatisation for closed, recursion-free terms.Comment: Dedicated to Bill Roscoe, on the occasion of his 60th birthda

    On CSP and the Algebraic Theory of Effects

    Full text link
    We consider CSP from the point of view of the algebraic theory of effects, which classifies operations as effect constructors or effect deconstructors; it also provides a link with functional programming, being a refinement of Moggi's seminal monadic point of view. There is a natural algebraic theory of the constructors whose free algebra functor is Moggi's monad; we illustrate this by characterising free and initial algebras in terms of two versions of the stable failures model of CSP, one more general than the other. Deconstructors are dealt with as homomorphisms to (possibly non-free) algebras. One can view CSP's action and choice operators as constructors and the rest, such as concealment and concurrency, as deconstructors. Carrying this programme out results in taking deterministic external choice as constructor rather than general external choice. However, binary deconstructors, such as the CSP concurrency operator, provide unresolved difficulties. We conclude by presenting a combination of CSP with Moggi's computational {\lambda}-calculus, in which the operators, including concurrency, are polymorphic. While the paper mainly concerns CSP, it ought to be possible to carry over similar ideas to other process calculi

    Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid

    Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding

    Get PDF
    Background: Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure and promote atheroma. Methodology/Principal Findings: Apoe(-/-) and Apoe(-/-)/IL-1R1(-/-) mice were fed high fat diets for 8 weeks, and their blood pressure and atherosclerosis development measured. Apoe(-/-)/IL-R1(-/-) mice had a reduced blood pressure and significantly less atheroma than Apoe(-/-) mice. Selective loss of IL-1 signaling in the vessel wall by bone marrow transplantation also reduced plaque burden (p<0.05). This was associated with an IL-1 mediated loss of endothelium-dependent relaxation and an increase in vessel wall Nox 4. Inhibition of IL-1 restored endothelium-dependent vasodilatation and reduced levels of arterial oxidative stress. Conclusions/Significance: The IL-1 cytokine system links atherogenic environmental stimuli with arterial inflammation, oxidative stress, increased blood pressure and atherosclerosis. This is the first demonstration that inhibition of a single cytokine can block the rise in blood pressure in response to an environmental stimulus. IL-1 inhibition may have profound beneficial effects on atherogenesis in man

    Dacryocystitis presenting as post-septal cellulitis: a case report

    Get PDF
    Dacryocystitis is relatively common, the majority of patients present with pre-septal cellulitis and not an orbital abscess due to anatomical barriers. The authors report a case of dacryocystitis presenting as post-septal cellulitis in a postmenopausal lady with an underlying malignancy. Following antibiotic therapy and elective dacryocystorhinostomy the patient is still under follow-up, and has no further recurrence of symptoms. Orbital abscess in postmenopausal women presenting with dacryocystitis should be considered, as prompt recognition and early surgical intervention is required to prevent visual loss

    A Fourth KLK4 Mutation Is Associated with Enamel Hypomineralisation and Structural Abnormalities

    Get PDF
    “Amelogenesis imperfecta” (AI) describes a group of genetic conditions that result in defects in tooth enamel formation. Mutations in many genes are known to cause AI, including the gene encoding the serine protease, kallikrein related peptidase 4 (KLK4), expressed during the maturation stage of amelogenesis. In this study we report the fourth KLK4 mutation to be identified in autosomal recessively-inherited hypomaturation type AI, c.632delT, p.(L211Rfs*37) (NM_004917.4, NP_004908.4). This homozygous variant was identified in five Pakistani AI families and is predicted to result in a transcript with a premature stop codon that escapes nonsense mediated decay. However, the protein may misfold, as three of six disulphide bonds would be disrupted, and may be degraded or non-functional as a result. Primary teeth were obtained from one affected individual. The enamel phenotype was characterized using high-resolution computerized X-ray tomography (CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and microhardness testing (MH). Enamel from the affected individual (referred to as KLK4 enamel) was hypomineralised in comparison with matched control enamel. Furthermore, KLK4 inner enamel was hypomineralised compared with KLK4 outer enamel. SEM showed a clear structural demarcation between KLK4 inner and outer enamel, although enamel structure was similar to control tissue overall. EDX showed that KLK4 inner enamel contained less calcium and phosphorus and more nitrogen than control inner enamel and KLK4 outer enamel. MH testing showed that KLK4 inner enamel was significantly softer than KLK4 outer enamel (p < 0.001). However, the hardness of control inner enamel was not significantly different to that of control outer enamel. Overall, these findings suggest that the KLK4 c.632delT mutation may be a common cause of autosomal recessive AI in the Pakistani population. The phenotype data obtained mirror findings in the Klk4‟/‟ mouse and suggest that KLK4 is required for the hardening and mineralization of the inner enamel layer but is less essential for hardening and mineralization of the outer enamel layer

    Distinct Neural Signatures of Outcome Monitoring After Selection and Execution Errors

    Get PDF
    Losing a point in tennis could result from poor shot selection or faulty stroke execution. To explore how the brain responds to these different types of errors, we examined feedback-locked EEG activity while participants completed a modified version of a standard three-armed bandit probabilistic reward task. Our task framed unrewarded outcomes as the result of either errors of selection or errors of execution. We examined whether amplitude of a medial frontal negativity (the feedback-related negativity [FRN]) was sensitive to the different forms of error attribution. Consistent with previous reports, selection errors elicited a large FRN relative to rewards, and amplitude of this signal correlated with behavioral adjustment after these errors. A different pattern was observed in response to execution errors. These outcomes produced a larger FRN, a frontocentral attenuation in activity preceding this component, and a subsequent enhanced error positivity in parietal sites. Notably, the only correlations with behavioral adjustment were with the early frontocentral attenuation and amplitude of the parietal signal; FRN differences between execution errors and rewarded trials did not correlate with subsequent changes in behavior. Our findings highlight distinct neural correlates of selection and execution error processing, providing insight into how the brain responds to the different classes of error that determine future action

    Iron therapy for preoperative anaemia

    Get PDF
    Preoperative anaemia is common and occurs in 5% to 76% of patients preoperatively. It is associated with an increased risk of perioperative allogeneic blood transfusion, longer hospital stay, and increased morbidity and mortality. Iron deficiency is one of the most common causes of anaemia. Oral and intravenous iron therapy can be used to treat anaemia. Parenteral iron preparations have been shown to be more effective in conditions such as inflammatory bowel disease, chronic heart failure and postpartum haemorrhage due to rapid correction of iron stores. A limited number of studies has investigated iron therapy for the treatment of preoperative anaemia. The aim of this Cochrane Review is to summarise the evidence for iron supplementation, both enteral and parenteral, for the management of preoperative anaemia. Objectives To evaluate the effects of preoperative iron therapy (enteral or parenteral) in reducing the need for allogeneic blood transfusions in anaemic patients undergoing surgery. Search methods We ran the search on 30 July 2018. We searched the Cochrane Injuries Group's Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library), Ovid MEDLINE(R), Ovid MEDLINE(R) In‐Process & Other Non‐Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), Embase Classic and Embase (Ovid), CINAHL Plus (EBSCO), PubMed, and clinical trials registries, and we screened reference lists. We ran a top‐up search on 28 November 2019; one study is now awaiting classification. Selection criteria We included all randomised controlled trials (RCTs) that compared preoperative iron monotherapy to placebo, no treatment, standard care or another form of iron therapy for anaemic adults undergoing surgery. We defined anaemia as haemoglobin values less than 13 g/dL for males and 12 g/dL for non‐pregnant females. Data collection and analysis Two review authors collected data and a third review author checked all collected data. Data were collected on the proportion of patients who receive a blood transfusion, the amount of blood transfused per patient (units), quality of life, ferritin levels and haemoglobin levels, measured as continuous variables at the following predetermined time points: pretreatment (baseline), preoperatively but postintervention, and postoperatively. We performed statistical analysis using the Cochrane software, Review Manager 5. We summarised outcome data in tables and forest plots. We used the GRADE approach to describe the quality of the body of evidence. Main results Six RCTs, with a total of 372 participants, evaluated preoperative iron therapy to correct anaemia before planned surgery. Four studies compared iron therapy (either oral (one study) or intravenous (three studies)) with no treatment, placebo or usual care, and two studies compared intravenous iron therapy with oral iron therapy. Iron therapy was delivered over a range of periods that varied from 48 hours to three weeks prior to surgery. The 372 participants in our analysis fall far short of the 819 required ‐ as calculated by our information size calculation ‐ to detect a 30% reduction in blood transfusions. Five trials, involving 310 people, reported the proportion of participants who received allogeneic blood transfusions. Meta‐analysis of iron therapy versus placebo or standard care showed no difference in the proportion of participants who received a blood transfusion (risk ratio (RR) 1.21, 95% confidence interval (CI) 0.87 to 1.70; 4 studies, 200 participants; moderate‐quality evidence). Only one study that compared oral versus intravenous iron therapy measured this outcome, and reported no difference in risk of transfusion between groups. There was no difference between the iron therapy and placebo/standard care groups for haemoglobin level preoperatively at the end of the intervention (mean difference (MD) 0.63 g/dL, 95% CI ‐0.07 to 1.34; 2 studies, 83 participants; low‐quality evidence). However, intravenous iron therapy produced an increase in preoperative postintervention haemoglobin levels compared with oral iron (MD 1.23 g/dL, 95% CI 0.80 to 1.65; 2 studies, 172 participants; low‐quality evidence). Ferritin levels were increased by intravenous iron, both when compared to standard care ((MD 149.00, 95% CI 25.84 to 272.16; 1 study, 63 participants; low‐quality evidence) or to oral iron (MD 395.03 ng/mL, 95% CI 227.72 to 562.35; 2 studies, 151 participants; low‐quality evidence). Not all studies measured quality of life, short‐term mortality or postoperative morbidity. Some measured the outcomes, but did not report the data, and the studies which did report the data were underpowered. Therefore, uncertainty remains regarding these outcomes. The inclusion of new research in the future is very likely to change these results. Authors' conclusions The use of iron therapy for preoperative anaemia does not show a clinically significant reduction in the proportion of trial participants who received an allogeneic blood transfusion compared to no iron therapy. Results for intravenous iron are consistent with a greater increase in haemoglobin and ferritin when compared to oral iron, but do not provide reliable evidence. These conclusions are drawn from six studies, three of which included very small numbers of participants. Further, well‐designed, adequately powered, RCTs are required to determine the true effectiveness of iron therapy for preoperative anaemia. Two studies are currently in progress, and will include 1500 randomised participants.Published onlin

    A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene

    Get PDF
    Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression
    • 

    corecore