899 research outputs found
The radiation of cynodonts and the ground plan of mammalian morphological diversity
Cynodont therapsids diversified extensively after the Permo-Triassic mass extinction event, and gave rise to mammals in the Jurassic. We use an enlarged and revised dataset of discrete skeletal characters to build a new phylogeny for all main cynodont clades from the Late Permian to the Early Jurassic, and we analyse models of morphological diversification in the group. Basal taxa and epicynodonts are paraphyletic relative to eucynodonts, and the latter are divided into cynognathians and probainognathians, with tritylodonts and mammals forming sister groups. Disparity analyses reveal a heterogeneous distribution of cynodonts in a morphospace derived from cladistic characters. Pairwise morphological distances are weakly correlated with phylogenetic distances. Comparisons of disparity by groups and through time are non-significant, especially after the data are rarefied. A disparity peak occurs in the Early/Middle Triassic, after which period the mean disparity fluctuates little. Cynognathians were characterized by high evolutionary rates and high diversity early in their history, whereas probainognathian rates were low. Community structure may have been instrumental in imposing different rates on the two clades
OXA β-lactamases
The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems
Quantum Mechanics on SO(3) via Non-commutative Dual Variables
We formulate quantum mechanics on SO(3) using a non-commutative dual space
representation for the quantum states, inspired by recent work in quantum
gravity. The new non-commutative variables have a clear connection to the
corresponding classical variables, and our analysis confirms them as the
natural phase space variables, both mathematically and physically. In
particular, we derive the first order (Hamiltonian) path integral in terms of
the non-commutative variables, as a formulation of the transition amplitudes
alternative to that based on harmonic analysis. We find that the non-trivial
phase space structure gives naturally rise to quantum corrections to the action
for which we find a closed expression. We then study both the semi-classical
approximation of the first order path integral and the example of a free
particle on SO(3). On the basis of these results, we comment on the relevance
of similar structures and methods for more complicated theories with
group-based configuration spaces, such as Loop Quantum Gravity and Spin Foam
models.Comment: 29 pages; matches the published version plus footnote 7, a journal
reference include
An inhomogeneous toy-model of the quantum gravity with explicitly evolvable observables
An inhomogeneous (1+1)-dimensional model of the quantum gravity is
considered. It is found, that this model corresponds to a string propagating
against some curved background space. The quantization scheme including the
Wheeler-DeWitt equation and the "particle on a sphere" type of the gauge
condition is suggested. In the quantization scheme considered, the "problem of
time" is solved by building of the quasi-Heisenberg operators acting in a space
of solutions of the Wheeler-DeWitt equation and the normalization of the wave
function corresponds to the Klein-Gordon type. To analyze the physical
consequences of the scheme, a (1+1)-dimensional background space is considered
for which a classical solution is found and quantized. The obtained estimations
show the way to solution of the cosmological constant problem, which consists
in compensation of the zero-point oscillations of the matter fields by the
quantum oscillations of the scale factor. Along with such a compensation, a
slow global evolution of a background corresponding to an universe expansion
exists.Comment: 18 page
Supermembrane interaction with dynamical D=4 N=1 supergravity. Superfield Lagrangian description and spacetime equations of motion
We obtain the complete set of equations of motion for the interacting system
of supermembrane and dynamical D=4 N = 1 supergravity by varying its complete
superfield action and writing the resulting superfield equations in the special
gauge where the supermembrane Goldstone field is set to zero. We solve the
equations for auxiliary fields and discuss the effect of dynamical generation
of cosmological constant in the Einstein equation of interacting system and its
renormalization due to some regular contributions from supermembrane. These two
effects (discussed in late 70th and 80th, in the bosonic perspective and in the
supergravity literature) result in that, generically, the cosmological constant
has different values in the branches of the spacetime separated by the
supermembrane worldvolume.Comment: 23 pages, no figures. V2 two references added, 24 page
Action for the eleven dimensional multiple M-wave system
We present the covariant supersymmetric and kappa-symmetric action for a
system of N nearly coincident M-waves (multiple M0-brane system) in flat eleven
dimensional superspace.Comment: 4+ pages, RevTeX4, no figures. V2: misprints corrected, discussion
extended, references added, LaTeX, 10 pages. V3: misprints corrected. V4,
extended version, 1+13 pages, to appear in JHE
Towards a tensionless string field theory for the N=(2,0) CFT in d=6
We describe progress in using the field theory of tensionless strings to
arrive at a Lagrangian for the six-dimensional conformal
theory. We construct the free part of the theory and propose an ansatz for the
cubic vertex in light-cone superspace. By requiring closure of the
supersymmetry algebra, we fix the cubic vertex up to two parameters.Comment: 46 pages, 2 figures. V2: references added; minor changes and
improvement
Spinning strings and integrable spin chains in the AdS/CFT correspondence
In this introductory review we discuss dynamical tests of the AdS_5 x S^5
string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we
argue that semiclassical string energies yield information on the quantum
spectrum of the string in the limit of large angular momenta on the S^5. The
energies of the folded and circular spinning string solutions rotating on a S^3
within the S^5 are derived, which yield all loop predictions for the dual gauge
theory scaling dimensions. These follow from the eigenvalues of the dilatation
operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display
its reformulation in terms of a Heisenberg s=1/2 spin chain along with the
coordinate Bethe ansatz for its explicit diagonalization. In order to make
contact to the spinning string energies we then study the thermodynamic limit
of the one-loop gauge theory Bethe equations and demonstrate the matching with
the folded and closed string result at this loop order. Finally the known gauge
theory results at higher-loop orders are reviewed and the associated long-range
spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop
conjecture for the gauge theory Bethe equations. This uncovers discrepancies at
the three-loop order between gauge theory scaling dimensions and string theory
energies and the implications of this are discussed. Along the way we comment
on further developments and generalizations of the subject and point to the
relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2:
improvements in the text and references adde
- …