5,882 research outputs found

    Comparison of two percutaneous tracheostomy techniques, guide wire dilating forceps and Ciaglia Blue Rhino: a sequential cohort study

    Get PDF
    INTRODUCTION: To evaluate and compare the peri-operative and postoperative complications of the two most frequently used percutaneous tracheostomy techniques, namely guide wire dilating forceps (GWDF) and Ciaglia Blue Rhino (CBR). METHODS: A sequential cohort study with comparison of short-term and long-term peri-operative and postoperative complications was performed in the intensive care unit of the University Medical Centre in Nijmegen, The Netherlands. In the period 1997–2000, 171 patients underwent a tracheostomy with the GWDF technique and, in the period 2000–2003, a further 171 patients with the CBR technique. All complications were prospectively registered on a standard form. RESULTS: There was no significant difference in major complications, either peri-operative or postoperative. We found a significant difference in minor peri-operative complications (P < 0.01) and minor late complications (P < 0.05). CONCLUSION: Despite a difference in minor complications between GWDF and CBR, both techniques seem equally reliable

    Entropy flow in near-critical quantum circuits

    Full text link
    Near-critical quantum circuits are ideal physical systems for asymptotically large-scale quantum computers, because their low energy collective excitations evolve reversibly, effectively isolated from the environment. The design of reversible computers is constrained by the laws governing entropy flow within the computer. In near-critical quantum circuits, entropy flows as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit laws. The quantum entropy current is just the energy current divided by the temperature. A quantum circuit made from a near-critical system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quantum field theory on the circuit. The universal properties of the energy-momentum tensor constrain the entropy flow characteristics of the circuit components: the entropic conductivity of the quantum wires and the entropic admittance of the quantum circuit junctions. For example, near-critical quantum wires are always resistanceless inductors for entropy. A universal formula is derived for the entropic conductivity: \sigma_S(\omega)=iv^{2}S/\omega T, where \omega is the frequency, T the temperature, S the equilibrium entropy density and v the velocity of `light'. The thermal conductivity is Real(T\sigma_S(\omega))=\pi v^{2}S\delta(\omega). The thermal Drude weight is, universally, v^{2}S. This gives a way to measure the entropy density directly.Comment: 2005 paper published 2017 in Kadanoff memorial issue of J Stat Phys with revisions for clarity following referee's suggestions, arguments and results unchanged, cross-posting now to quant-ph, 27 page

    Cold Accretion Disks and Lineless Quasars

    Full text link
    The optical-UV continuum of quasars is broadly consistent with the emission from a geometrically thin optically thick accretion disk (AD). The AD produces the ionizing continuum which powers the broad and narrow emission lines. The maximum AD effective temperature is given by Teff=fmax(Mdot/M^2)^1/4, where M is the black hole mass, Mdot the accretion rate, and fmax is set by the black hole spin a_*. For a low enough value of Mdot/M^2 the AD may become too cold to produce ionizing photons. Such an object will form a lineless quasar. This occurs for a local blackbody (BB) AD with a luminosity Lopt=10^46 erg/s for M>3.6E9 Msun, when a_*=0, and for M>1.4E10 Msun, when a_*=0.998. Using the AD based Mdot, derived from M and Lopt, and the reverberation based M, derived from Lopt and the Hbeta FWHM, v, gives Teff \propto Lopt^-0.13v^-1.45. Thus, Teff is mostly set by v. Quasars with a local BB AD become lineless for v> 8,000 km/s, when a_*=0, and for v> 16,000 km/s, when a_*=0.998. Higher values of v are required if the AD is hotter than a local BB. The AD becoming non-ionizing may explain why line emitting quasars with v>10,000 km/s are rare. Weak low ionization lines may still be present if the X-ray continuum is luminous enough, and such objects may form a population of weak emission line quasars (WLQ). If correct, such WLQ should show a steeply falling SED at lambda<1000A. Such an SED was observed by Hryniewicz et al. in SDSS J094533.99+100950.1, a WLQ observed down to 570A, which is well modeled by a rather cold AD SED. UV spectroscopy of z~1-2 quasars is required to eliminate potential intervening Lyman limit absorption by the intergalactic medium (IGM), and to explore if the SEDs of lineless quasars and some additional WLQ are also well fit by a cold AD SED.Comment: Accepted for publication in MNRA

    The preliminary lattice QCD calculation of κ\kappa meson decay width

    Full text link
    We present a direct lattice QCD calculation of the κ\kappa meson decay width with the s-wave scattering phase shift for the isospin I=1/2I=1/2 pion-kaon (πK\pi K) system. We employ a special finite size formula, which is the extension of the Rummukainen-Gottlieb formula for the πK\pi K system in the moving frame, to calculate the scattering phase, which indicates a resonance around κ\kappa meson mass. Through the effective range formula, we extract the effective κπK\kappa \to \pi K coupling constant gκπK=4.54(76)g_{\kappa \pi K} = 4.54(76) GeV and decay width Γ=293±101\Gamma = 293 \pm 101 MeV. Our simulations are done with the MILC gauge configurations with Nf=2+1N_f=2+1 flavors of the "Asqtad" improved staggered dynamical sea quarks on a 163×4816^3\times48 lattice at (mπ+mK)/mκ0.8(m_\pi + m_K) / m_\kappa \approx 0.8 and lattice spacing a0.15a \approx 0.15 fm.Comment: To make it concise. arXiv admin note: text overlap with arXiv:1110.1422, but much of v1 text overlap with articles by same and other authors remove

    Exploiting Event Log Event Attributes in RNN Based Prediction

    Get PDF
    In predictive process analytics, current and historical process data in event logs are used to predict future. E.g., to predict the next activity or how long a process will still require to complete. Recurrent neural networks (RNN) and its subclasses have been demonstrated to be well suited for creating prediction models. Thus far, event attributes have not been fully utilized in these models. The biggest challenge in exploiting them in prediction models is the potentially large amount of event attributes and attribute values. We present a novel clustering technique which allows for trade-offs between prediction accuracy and the time needed for model training and prediction. As an additional finding, we also find that this clustering method combined with having raw event attribute values in some cases provides even better prediction accuracy at the cost of additional time required for training and prediction.Peer reviewe

    Yangian in the Twistor String

    Get PDF
    We study symmetries of the quantized open twistor string. In addition to global PSL(4|4) symmetry, we find non-local conserved currents. The associated non-local charges lead to Ward identities which show that these charges annihilate the string gluon tree amplitudes, and have the same form as symmetries of amplitudes in N=4 super conformal Yang Mills theory. We describe how states of the open twistor string form a realization of the PSL(4|4) Yangian superalgebra.Comment: 37 pages, 4 figure
    corecore