87 research outputs found

    Directly imaging damped Ly α galaxies at z > 2 – III. The star formation rates of neutral gas reservoirs at z ∌ 2.7

    Get PDF
    We present results from a survey designed to probe the star formation properties of 32 damped Lyman α systems (DLAs) at z ∌ 2.7. By using the ‘double-DLA’ technique that eliminates the glare of the bright background quasars, we directly measure the rest-frame far-ultraviolet flux from DLAs and their neighbouring galaxies. At the position of the absorbing gas, we place stringent constraints on the unobscured star formation rates (SFRs) of DLAs to 2σ limits of ψ˙<0.09-0.27M⊙ yr−1, corresponding to SFR surface densities ÎŁsfr < 10−2.6–10−1.5M⊙ yr−1 kpc−2. The implications of these limits for the star formation law, metal enrichment, and cooling rates of DLAs are examined. By studying the distribution of impact parameters as a function of SFRs for all the galaxies detected around these DLAs, we place new direct constraints on the bright end of the UV luminosity function of DLA hosts. We find that ≀13 per cent of the hosts have ψ˙≄2M⊙ yr−1 at impact parameters bdla≀(ψ˙/M⊙yr−1)0.8+6kpc, differently from current samples of confirmed DLA galaxies. Our observations also disfavour a scenario in which the majority of DLAs arise from bright Lyman-break galaxies at distances 20 ≀ bdla < 100 kpc. These new findings corroborate a picture in which DLAs do not originate from highly star-forming systems that are coincident with the absorbers, and instead suggest that DLAs are associated with faint, possibly isolated, star-forming galaxies. Potential shortcomings of this scenario and future strategies for further investigation are discussed

    The Effect of High Column Density Systems on the Measurement of the Lyman \alpha Forest Correlation Function

    Full text link
    We present a study of the effect of High Column Density (HCD) systems on the Lyman \alpha forest correlation function on large scales. We study the effect both numerically, by inserting HCD systems on mock spectra for a specific model, and analytically, in the context of two-point correlations and linear theory. We show that the presence of HCDs substantially contributes to the noise of the correlation function measurement, and systematically alters the measured redshift-space correlation function of the Lyman \alpha forest, increasing the value of the density bias factor and decreasing the redshift distortion parameter ÎČα\beta_\alpha of the Lyman \alpha forest. We provide simple formulae for corrections on these derived parameters, as a function of the mean effective optical depth and bias factor of the host halos of the HCDs, and discuss the conditions under which these expressions should be valid. In practice, precise corrections to the measured parameters of the Lyman \alpha forest correlation for the HCD effects are more complex than the simple analytical approximations we present, owing to non-linear effects of the damped wings of the HCD systems and the presence of three-point terms. However, we conclude that an accurate correction for these HCD effects can be obtained numerically and calibrated with observations of the HCD-Lyman \alpha cross-correlation. We also discuss an analogous formalism to treat and correct for the contaminating effect of metal lines overlapping the Lyman \alpha forest spectra.Comment: 26 pages, 11 figure

    Metal-enriched, subkiloparsec gas clumps in the circumgalactic medium of a faint z = 2.5 galaxy

    Get PDF
    We report the serendipitous detection of a 0.2 L*, Lyα emitting galaxy at redshift 2.5 at an impact parameter of 50 kpc from a bright background QSO sightline. A high-resolution spectrum of the QSO reveals a partial Lyman-limit absorption system (NHi=1016.94±0.10 cm−2) with many associated metal absorption lines at the same redshift as the foreground galaxy. Using photoionization models that carefully treat measurement errors and marginalize over uncertainties in the shape and normalization of the ionizing radiation spectrum, we derive the total hydrogen column density NH=1019.4±0.3cm−2, and show that all the absorbing clouds are metal enriched, with Z = 0.1–0.6 Z⊙. These metallicities and the system's large velocity width (436 km s− 1) suggest the gas is produced by an outflowing wind. Using an expanding shell model we estimate a mass outflow rate of ∌5 M⊙ yr−1. Our photoionization model yields extremely small sizes (<100–500 pc) for the absorbing clouds, which we argue is typical of high column density absorbers in the circumgalactic medium (CGM). Given these small sizes and extreme kinematics, it is unclear how the clumps survive in the CGM without being destroyed by hydrodynamic instabilities. The small cloud sizes imply that even state-of-the-art cosmological simulations require more than a 1000-fold improvement in mass resolution to resolve the hydrodynamics relevant for cool gas in the CGM

    The nature of massive black hole binary candidates - II. Spectral energy distribution atlas

    Get PDF
    Recoiling supermassive black holes (SMBHs) are considered one plausible physical mechanism to explain high velocity shifts between narrow and broad emission lines sometimes observed in quasar spectra. If the sphere of influence of the recoiling SMBH is such that only the accretion disc is bound, the dusty torus would be left behind, hence the SED should then present distinctive features (i.e. a mid-infrared deficit). Here, we present results from fitting the spectral energy distributions (SEDs) of 32 type-1 AGN with high velocity shifts between broad and narrow lines. The aim is to find peculiar properties in the multiwavelength SEDs of such objects by comparing their physical parameters (torus and disc luminosity, intrinsic reddening, and size of the 12 ÎŒm emitter) with those estimated from a control sample of ∌1000 typical quasars selected from the Sloan Digital Sky Survey in the same redshift range. We find that all sources, with the possible exception of J1154+0134, analysed here present a significant amount of 12 ÎŒm emission. This is in contrast with a scenario of an SMBH displaced from the centre of the galaxy, as expected for an undergoing recoil event

    The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time

    Get PDF
    We have obtained spectra of 163 quasars at zem > 4.4 with the Gemini Multi Object Spectrometers, the largest publicly available sample of high-quality, low-resolution spectra at these redshifts. From this data set, we generated stacked quasar spectra in three redshift intervals at z ∌ 5 to model the average rest-frame Lyman continuum flux and to assess the mean free path λ912mfp of the intergalactic medium to H I-ionizing radiation. At mean redshifts zq = (4.56, 4.86, 5.16), we measure λ912mfp=(22.2±2.3,15.1±1.8,10.3±1.6)h−170 proper Mpc with uncertainties dominated by sample variance. Combining our results with measurements from lower redshifts, the data are well modelled by a power law λ912mfp=A[(1+z)/5]η with A=(37±2)h−170 Mpc and η = −5.4 ± 0.4 at 2.3 < z < 5.5. This rapid evolution requires a physical mechanism – beyond cosmological expansion – which reduces the effective Lyman limit opacity. We speculate that the majority of H I Lyman limit opacity manifests in gas outside galactic dark matter haloes, tracing large-scale structures (e.g. filaments) whose average density and neutral fraction decreases with cosmic time. Our measurements of the mean free path shortly after H I reionization serve as a valuable boundary condition for numerical models thereof. Our measured λ912mfp≈10 Mpc at z = 5.2 confirms that the intergalactic medium is highly ionized without evidence for a break that would indicate a recent end to H I reionization

    The First Detection of Cobalt in a Damped Lyman Alpha System

    Get PDF
    We present the first ever detection of Cobalt in a Damped Lyman Alpha system (DLA) at z = 1.92. In addition to providing important clues to the star formation history of these high redshift galaxies, we discuss how studying the Co abundance in DLAs may also help to constrain models of stellar nucleosynthesis in a regime not probed by Galactic stars.Comment: 4 pages, to appear in the proceedings of `New Quests in Stellar Astrophysics: The Link Between Stars and Cosmology', eds. M. Chavez, A. Bressan, A. Buzzoni, D. Mayy

    The neutral hydrogen cosmological mass density at z = 5

    Get PDF
    We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, ΩHi. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on ΩHi. We find ΩHI=0.98+0.20−0.18×10−3 at 〈z〉 = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that ΩHi can be described by the functional form ΩHI(z)∝(1+z)0.4. This gradual decrease from z = 5 to 0 is consistent with the bulk of H I gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds

    Measuring the 3D Clustering of Undetected Galaxies Through Cross Correlation of their Cumulative Flux Fluctuations from Multiple Spectral Lines

    Full text link
    We discuss a method for detecting the emission from high redshift galaxies by cross correlating flux fluctuations from multiple spectral lines. If one can fit and subtract away the continuum emission with a smooth function of frequency, the remaining signal contains fluctuations of flux with frequency and angle from line emitting galaxies. Over a particular small range of observed frequencies, these fluctuations will originate from sources corresponding to a series of different redshifts, one for each emission line. It is possible to statistically isolate the fluctuations at a particular redshift by cross correlating emission originating from the same redshift, but in different emission lines. This technique will allow detection of clustering fluctuations from the faintest galaxies which individually cannot be detected, but which contribute substantially to the total signal due to their large numbers. We describe these fluctuations quantitatively through the line cross power spectrum. As an example of a particular application of this technique, we calculate the signal-to-noise ratio for a measurement of the cross power spectrum of the OI(63 micron) and OIII(52 micron) fine structure lines with the proposed Space Infrared Telescope for Cosmology and Astrophysics. We find that the cross power spectrum can be measured beyond a redshift of z=8. Such observations could constrain the evolution of the metallicity, bias, and duty cycle of faint galaxies at high redshifts and may also be sensitive to the reionization history through its effect on the minimum mass of galaxies. As another example, we consider the cross power spectrum of CO line emission measured with a large ground based telescope like CCAT and 21-cm radiation originating from hydrogen in galaxies after reionization with an interferometer similar in scale to MWA, but optimized for post-reionization redshifts.Comment: 21 pages, 6 figures; Replaced with version accepted by JCAP; Added an example of cross correlating CO line emission and 21cm line emission from galaxies after reionizatio

    Theoretical Interpretation of GRB 031203 and URCA-3

    Full text link
    We present an analysis of the late time X-ray emission (URCA-3) connected with GRB 031203 and SN 2003lw.Comment: 3 pages, 2 figures, to appear in the proceedings of "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting, November 7-11, 2005, Munich, Germany, edited by B. Aschenbach, V. Burwitz, G. Hasinger, and B. Leibundgu
    • 

    corecore