1,077 research outputs found
Quote from J. W. Wells about President Lewis
A small slip of paper with a quote from J.W. Wells, Class of 1920.https://scholars.fhsu.edu/buildings/1049/thumbnail.jp
On the Planetary acceleration and the Rotation of the Earth
We have developed a model for the Earth rotation that gives a good account
(data) of the Earth astronomical parameters. These data can be compared with
the ones obtained using space-base telescopes. The expansion of the universe
has an impact on the rotation of planets, and in particular, the Earth. The
expansion of the universe causes an acceleration that is exhibited by all
planets.Comment: 8 Latex page
On the Obstructions to non-Cliffordian Pin Structures
We derive the topological obstructions to the existence of non-Cliffordian
pin structures on four-dimensional spacetimes. We apply these obstructions to
the study of non-Cliffordian pin-Lorentz cobordism. We note that our method of
derivation applies equally well in any dimension and in any signature, and we
present a general format for calculating obstructions in these situations.
Finally, we interpret the breakdown of pin structure and discuss the relevance
of this to aspects of physics.Comment: 31 pages, latex, published in Comm. Math. Phys. 164, No. 1, pages
65-87 (1994
A High Power Hydrogen Target for Parity Violation Experiments
Parity-violating electron scattering measurements on hydrogen and deuterium,
such as those underway at the Bates and CEBAF laboratories, require
luminosities exceeding cms, resulting in large beam
power deposition into cryogenic liquid. Such targets must be able to absorb 500
watts or more with minimal change in target density. A 40~cm long liquid
hydrogen target, designed to absorb 500~watts of beam power without boiling,
has been developed for the SAMPLE experiment at Bates. In recent tests with
40~A of incident beam, no evidence was seen for density fluctuations in
the target, at a sensitivity level of better than 1\%. A summary of the target
design and operational experience will be presented.Comment: 13 pages, 9 postscript figure
Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments
We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting ordering temperature T-c=40 K. The incommensurability value is consistent with a hole doping of n(h)approximate to 1>8 but in contrast to nonsuperoxygenated La2-xSrxCuO4 with hole doping close to n(h)approximate to 18 the magnetic-order parameter is not field dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the spin and charge ordered "stripe" compounds La1.48Nd0.40Sr0.12CuO4 and La7/8Ba1/8CuO4
In depth analysis of kinase cross screening data to identify CaMKK2 inhibitory scaffolds
The calcium/calmodulin‐dependent protein kinase kinase 2 (CAMKK2) activates CAMK1, CAMK4, AMPK, and AKT, leading to numerous physiological responses. The deregulation of CAMKK2 is linked to several diseases, suggesting the utility of CAMKK2 inhibitors for oncological, metabolic and inflammatory indications. In this work, we demonstrate that STO‐609, frequently described as a selective inhibitor for CAMKK2, potently inhibits a significant number of other kinases. Through an analysis of literature and public databases, we have identified other potent CAMKK2 inhibitors and verified their activities in differential scanning fluorimetry and enzyme inhibition assays. These inhibitors are potential starting points for the development of selective CAMKK2 inhibitors and will lead to tools that delineate the roles of this kinase in disease biology.252CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP465651/2014-32013/50724-5; 2014/50897-0; 2019/14275-
Axially symmetric Hartree-Fock-Bogoliubov Calculations for Nuclei Near the Drip-Lines
Nuclei far from stability are studied by solving the Hartree-Fock-Bogoliubov
(HFB) equations, which describe the self-consistent mean field theory with
pairing interaction. Calculations for even-even nuclei are carried out on
two-dimensional axially symmetric lattice, in coordinate space. The
quasiparticle continuum wavefunctions are considered for energies up to 60 MeV.
Nuclei near the drip lines have a strong coupling between weakly bound states
and the particle continuum. This method gives a proper description of the
ground state properties of such nuclei. High accuracy is achieved by
representing the operators and wavefunctions using the technique of
basis-splines. The detailed representation of the HFB equations in cylindrical
coordinates is discussed. Calculations of observables for nuclei near the
neutron drip line are presented to demonstrate the reliability of the method.Comment: 13 pages, 4 figures. Submitted to Physical Review C on 05/08/02.
Revised on Dec/0
Quasiparticle vanishing driven by geometrical frustration
We investigate the single hole dynamics in the triangular t-J model. We study
the structure of the hole spectral function, assuming the existence of a 120
magnetic Neel order. Within the self-consistent Born approximation (SCBA) there
is a strong momentum and t sign dependence of the spectra, related to the
underlying magnetic structure and the particle-hole asymmetry of the model. For
positive t, and in the strong coupling regime, we find that the low energy
quasiparticle excitations vanish outside the neighbourhood of the magnetic
Goldstone modes; while for negative t the quasiparticle excitations are always
well defined. In the latter, we also find resonances of magnetic origin whose
energies scale as (J/t)^2/3 and can be identified with string excitations. We
argue that this complex structure of the spectra is due to the subtle interplay
between magnon-assisted and free hopping mechanisms. Our predictions are
supported by an excellent agreement between the SCBA and the exact results on
finite size clusters. We conclude that the conventional quasiparticle picture
can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio
Spectral functions, Fermi surface and pseudogap in the t-J model
Spectral functions within the generalized t-J model as relevant to cuprates
are analyzed using the method of equations of motion for projected fermion
operators. In the evaluation of the self energy the decoupling of spin and
single-particle fluctuations is performed. It is shown that in an undoped
antiferromagnet (AFM) the method reproduces the selfconsistent Born
approximation. For finite doping with short range AFM order the approximation
evolves into a paramagnon contribution which retains large incoherent
contribution in the hole part of the spectral function as well as the
hole-pocket-like Fermi surface at low doping. On the other hand, the
contribution of (longitudinal) spin fluctuations, with the coupling mostly
determined predominantly by J and next-neighbor hopping t', is essential for
the emergence of the pseudogap. The latter shows at low doping in the effective
truncation of the large Fermi surface, reduced electron density of states and
at the same time quasiparticle density of states at the Fermi level.Comment: RevTex, 13 pages, 11 figures (5 color
- …