1,222 research outputs found

    Effects of Humidity on the Electro-Optical-Thermal Characteristics of High-Power LEDs

    Get PDF
    LEDs are subjected to environments with high moisture in many applications. In this paper, the experiments reveal photometric and colorimetric degradation at high humidity. Corresponding spectral power analysis and parameter extraction indicate that the flip-chip bonded LED samples show accelerated chip failure compared to the conventionally bonded samples. The chip-related failure induces greater heat accumulation, which correlates with the increase in heating power observed in the package. However, the temperature rise and thermal resistance for the flip-chip bonded LEDs do not increase substantially as compared to the conventionally bonded LEDs. This is because the junction temperature can be reduced with a flip-chip die-bonding configuration where the heat generated in the LED chip is dissipated effectively onto the AlN substrate, thereby reducing the increase in temperature rise and thermal resistance. The experimental results are supported by evaluation of the derivative structure functions. In addition, as the thermal resistance of the LED package varies with different humidity levels, there is a need to specify the conditions of humidity in data sheets as LED manufacturers routinely specify a universal thermal resistance value under a fixed operating condition

    Laparoscopy-Assisted Resection of Tailgut Cysts: Report of a Case

    Get PDF
    Tailgut cysts, or retrorectal cystic hamartomas, are rare congenital developmental lesions, most commonly located in the retrorectal space, and are more common in women. We present a case of retrorectal tailgut cyst managed using a laparoscopic approach. A 36-year-old woman presented with incidentally detected retrorectal tumors during evaluation for a gallbladder polyp. Her past medical history revealed that she had undergone cesarean section twice. The tumor marker CA 19-9 level was 42.52 U/ml. CT of the pelvis with contrast and pelvic MRI revealed a 3.9 × 3.3 cm well-defined, homogeneous cystic mass in the right presacral area, and a 2.5 × 1.5 cm cystic mass in the precoccygeal space. The patient underwent laparoscopic exploration with a preoperative diagnosis of tailgut cysts based on radiological findings. The operative time was 90 min including 30 min of subsequent laparoscopic cholecystectomy without placement of additional trocars. The surgical specimens consisted of two fragments of fibrofatty tissues, unilocular cystic masses. The final pathologic diagnosis was tailgut cysts with no evidence of malignancy. Postoperative recovery was uneventful, and the patient was discharged after 3 days. In conclusion, surgical resection is recommended in the management of retrorectal tailgut cyst to establish a definite diagnosis and to rule out malignancy. The laparoscopic approach is a feasible and safe option

    Implications of phosphor coating on the thermal characteristics of phosphor-converted white LEDs

    Get PDF
    The phosphor layer in phosphor-converted white Light Emitting Diodes (pcLEDs) affects their optical and thermal performances. This paper reports the effects of phosphor thickness and particle concentration on the optical efficiency and temperature rise on conformal phosphor-coated LED package. It is observed that a thicker phosphor layer and a higher phosphor particle concentration will increase the amount of backscattering and back reflection of light from the phosphor layer. These light extraction losses not only reduce the optical efficiency of the light output but also cause heat accumulation in the phosphor layer, leading to higher LED junction temperature. At 2700 K correlated colour temperature (CCT), the temperature rise is observed to increase by as much as 2.6 times as compared to its blue emitting LED package. However, the self-heating effect can be reduced through its die-bonding configuration. Structure function-based thermal evaluation shows heat accumulation in the phosphor layer and that flip-chip bonding can dissipate the heat generated in the GaN LED and phosphor layer effectively. Evidence in this study demonstrates that optical efficiency and thermal resistance of pcLEDs are dependent on the CCT ratings

    Multifractal Analysis on the Return Series of Stock Markets Using MF-DFA Method

    Get PDF
    Part 3: Finance and Service ScienceInternational audienceAnalyzing the daily returns of NASDAQ Composite Index by using MF-DFA method has led to findings that the return series does not fit the normal distribution and its leptokurtic indicates that a single-scale index is insufficient to describe the stock price fluctuation. Furthermore, it is found that the long-term memory characteristics are a main source of multifractality in time series. Based on the main reason causing multifractality, a contrast of the original return series and the reordered return series is made to demonstrate the stock price index fluctuation, suggesting that the both return series have multifractality. In addition, the empirical results verify the validity of the measures which illustrates that the stock market fails to reach the weak form efficiency

    De Sitter Cosmic Strings and Supersymmetry

    Full text link
    We study massive spinor fields in the geometry of a straight cosmic string in a de Sitter background. We find a hidden N=2 supersymmetry in the fermionic solutions of the equations of motion. We connect the zero mode solutions to the heat-kernel regularized Witten index of the supersymmetric algebra.Comment: Version similar to the one accepted by General Relativity and Gravitatio

    Sliding blocks with random friction and absorbing random walks

    Full text link
    With the purpose of explaining recent experimental findings, we study the distribution A(λ)A(\lambda) of distances λ\lambda traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the friction coefficient μ\mu is a random function of position is considered. The problem of finding A(λ)A(\lambda) is equivalent to a First-Passage-Time problem for a one-dimensional random walk with nonzero drift, whose exact solution is well-known. From the exact solution of this problem we conclude that: a) for inclination angles θ\theta less than \theta_c=\tan(\av{\mu}) the average traversed distance \av{\lambda} is finite, and diverges when θ→θc−\theta \to \theta_c^{-} as \av{\lambda} \sim (\theta_c-\theta)^{-1}; b) at the critical angle a power-law distribution of slidings is obtained: A(λ)∼λ−3/2A(\lambda) \sim \lambda^{-3/2}. Our analytical results are confirmed by numerical simulation, and are in partial agreement with the reported experimental results. We discuss the possible reasons for the remaining discrepancies.Comment: 8 pages, 8 figures, submitted to Phys. Rev.

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Minimum mass of galaxies from BEC or scalar field dark matter

    Full text link
    Many problems of cold dark matter models such as the cusp problem and the missing satellite problem can be alleviated, if galactic halo dark matter particles are ultra-light scalar particles and in Bose-Einstein condensate (BEC), thanks to a characteristic length scale of the particles. We show that this finite length scale of the dark matter can also explain the recently observed common central mass of the Milky Way satellites (∼107M⊙\sim 10^7 M_\odot) independent of their luminosity, if the mass of the dark matter particle is about 10−22eV10^{-22} eV.Comment: 10 pages, 1 figure, accepted in JCA

    Growth of (110) Diamond using pure Dicarbon

    Get PDF
    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction parallel to the surface. The adsorption energies are consistently exothermic by 8--10 eV per C_2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C_2 molecules on the surface in the vicinity of existing adsorbate clusters using an augmented Lagrangian penalty method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbons proceeds either by direct adsorption onto clean sites or after migration on top of the existing C_2n chains.Comment: 8 Pages, 7 figure

    The state-of-the-art development of photocatalysts for degrading of persistent herbicides in aqueous environment

    Get PDF
    Herbicides are one of the most recurring pollutants in the aquatic system due to their widespread usage in the agriculture sector for weed control. Semiconductor-based photocatalysts have gained recognition due to their ability to degrade and mineralize pollutants into harmless by-products completely. Lately, many studies have been done to design photocatalysts with efficient separation of photogenerated charge carriers and enhanced light absorption. Photocatalyst engineering through doping with metal and non-metal elements and the formation of heterojunction are proven effective for minimizing the recombination of electron-hole pairs and enlarging the absorption in the visible light region. This review focuses on discussing and evaluating the recent progress in the types of photocatalysts and their performance in the remediation of herbicides in wastewater. The development of innovative hybrid technologies is also highlighted. The limitations and challenges of photocatalysis technology in the present literature have been identified, and future studies are recommended
    • …
    corecore