1,054 research outputs found

    Activity of different desoximetasone preparations compared to other topical corticosteroids in the vasoconstriction assay

    Get PDF
    Introduction: We report on a double-blind, vehicle-controlled, single-center confirmatory study with random assignment. The purpose of the study was to investigate the topical bioavailability of different topical corticosteroid formulations in healthy human beings focussing on desoximetasone (DM). Materials and Methods: Two DM 0.25% formulations {[}ointment (DM-o) and fatty ointment (DM-fo, water-free); class III corticosteroids], the corresponding active ingredient-free vehicles and three comparators of different strength {[}clobetasol propionate 0.05% (CP 0.05%), fatty ointment, class IV; hydrocortisone (HC) 1%, fatty ointment, class I, and betamethasone (BM) 0.05%, fatty ointment, class III] were tested using the vasoconstriction assay. The degree of vasoconstriction (blanching) in the treatment field was compared to the one found in untreated control fields using chromametric measurements and clinical assessment. Results/Conclusion: DM-o 0.25%, DM-fo 0.25% and BM 0.05% showed similar vasoconstrictive potential, i.e., clear blanching. In fact, both DM preparations were proven to be non-inferior to BM 0.05%, while CP 0.05% was found a little less active. HC 1.0% and the DM vehicles showed no clear-cut vasoconstrictive effect. No adverse events related to the study medications were observed. Good topical bioavailability of both DM formulations was detected by chromametric measurement and clinical assessment. Copyright (C) 2008 S. Karger AG, Basel

    Random walks on finite lattice tubes

    Full text link
    Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for lattice tubes of arbitrary size and each of the regular lattice types; square, triangular and honeycomb. The results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms on single walled zig-zag carbon nano-tubes with open ends.Comment: 22 pages, 4 figure

    The potential of dental calculus as a novel source of biological isotopic data

    Get PDF
    Stable isotope analysis has become an essential tool in investigations of ancient migration and paleodietary reconstruction. Because the biogeochemistry of bone collagen and apatite is well known, current methods rely almost exclusively on analyses of bones and teeth; however, dental calculus represents a potentially additional biological source of isotopic data from ancient skeletons. Dental calculus is a mineralized bacterial biofilm that forms on the surfaces of teeth. Sampling dental calculus does not damage the dentition and thus can be used in cases where it is not possible to perform destructive analyses of conventional mineralized tissues. Like bone and dentine, dental calculus contains both inorganic and organic components, allowing measurement of C, N, O, H, and Sr isotopes. Additionally, dental calculus forms as serial, non-remodeling laminar accretions on the tooth surface, opening up the possibility of analyzing discrete time points during the lifetime of an individual. However, as a microbial biofilm and not a human tissue, the biochemistry of dental calculus is complex, containing multiple calcium phosphate mineral phases, organic and inorganic food remains, hundreds of human and bacterial proteins, and diverse biomolecules from thousands of endogenous bacterial taxa. Isotopic investigation of dental calculus is still in its infancy, and many questions remain regarding its formation and processes of diagenesis. This chapter (1) reviews the unique advantages presented by dental calculus as a novel source of biological isotopic data, (2) critically evaluates published isotopic studies of dental calculus, and (3) explores the current challenges of dental calculus stable isotope analysis through a case study of an Ancient Puebloan Basketmaker II population from the American Southwest.Bioarchaeolog

    Reaction Front in an A+B -> C Reaction-Subdiffusion Process

    Full text link
    We study the reaction front for the process A+B -> C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular its unusual behavior at the center of the reaction zone

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Endothelial dysfunction and low-grade inflammation are associated with greater arterial stiffness over a 6-year period

    Get PDF
    Endothelial dysfunction and low-grade inflammation are associated with cardiovascular disease. Arterial stiffening plays an important role in cardiovascular disease and, thus, may be a mechanism through which endothelial dysfunction and/or low-grade inflammation lead to cardiovascular disease. We investigated the associations between, on the one hand, biomarkers of endothelial dysfunction (soluble endothelial selectin, thrombomodulin, and both vascular and intercellular adhesion molecules 1 and von Willebrand factor) and of low-grade inflammation (C-reactive protein, serum amyloid A, interleukin 6, interleukin 8, tumor necrosis factor-α and, soluble intercellular adhesion molecule 1) and, on the other hand, arterial stiffness over a 6-year period, in 293 healthy adults (155 women). Biomarkers were combined into mean z scores. Carotid, femoral, and brachial arterial stiffness and carotid-femoral pulse wave velocity were determined by ultrasonography. Measurements were obtained when individuals were 36 and 42 years of age. Associations were analyzed with generalized estimating equation and adjusted for sex, height, and mean arterial pressure. The endothelial dysfunction z score was inversely associated with femoral distensibility (β:-0.51 [95% CI:-0.95 to-0.06]) and compliance coefficients (β:-0.041 [95% CI:-0.076 to-0.006]) but not with carotid or brachial stiffness or carotid-femoral pulse wave velocity. The low-grade inflammation z score was inversely associated with femoral distensibility (β:-0.51 [95% CI:-0.95 to-0.07]) and compliance coefficients (β:-0.050 [95% CI:-0.084 to-0.016]) and with carotid distensibility coefficient (β:-0.910 [95% CI:-1.810 to-0.008]) but not with brachial stiffness or carotid-femoral pulse wave velocity. Biomarkers of endothelial dysfunction and low-grade inflammation are associated with greater arterial stiffness. This provides evidence that arterial stiffening may be a mechanism through which endothelial dysfunction and low-grade inflammation lead to cardiovascular disease

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
    corecore