26 research outputs found

    Bounds on sterile neutrino mixing for cosmologically interesting mass range

    Get PDF
    This talk summarizes our recent work which studied the impact of resonant νeνs\nu_e \to\nu_s and νˉeνˉs\bar{\nu}_e\to\bar{\nu}_s (νs\nu_s is a sterile neutrino) conversions on supernova physics, under the assumption that the mass of the sterile state is in the few eV -cosmologically significant range.Comment: Latex file, 3 pages including 4 ps figures, Talk given by H. Nunokawa in TAUP97, Gran Sasso, Italy, 7-11 September, 199

    Testing neutrino instability with active galactic nuclei

    Get PDF
    Active galactic nuclei and gamma ray bursts at cosmological distances are sources of high-energy electron and muon neutrinos and provide a unique test bench for neutrino instability. The typical lifetime-to-mass ratio one can reach there is τ/m500Mpc/cEν500\tau/m\sim 500 Mpc/cE_{\nu}\sim 500 s/eV. We study the rapid decay channel νiνj+ϕ\nu_i\to\nu_j+\phi, where ϕ\phi is a massless or very light scalar (possibly a Goldstone boson), and point out that one can test the coupling strength of gijνiνjg_{ij}\nu_i\nu_j down to g_{ij}\lsim 10^{-8} eV/m by measuring the relative fluxes of νe\nu_{e}, νμ\nu_{\mu} and ντ\nu_{\tau}. This is orders of magnitude more stringent bound than what one can obtain in other phenomena, e.g. in neutrinoless double beta decay with scalar emission.Comment: 3 page

    Light Unstable Sterile Neutrino

    Get PDF
    The three massless active (doublet) neutrinos may mix with two heavy and one \underline {light} sterile (singlet) neutrinos so that the induced masses and mixings among the former are able to explain the present data on atmospheric and solar neutrino oscillations. If the LSND result is also to be explained, one active neutrino mass eigenstate must mix with the light sterile neutrino. A specific model is proposed with the spontaneous and soft explicit breaking of a new global U(1)SU(1)_S symmetry so that a sterile neutrino will decay into an active antineutrino and a nearly massless pseudo-Majoron.Comment: Discussion and references adde

    Reconciling dark matter and solar neutrinos

    Get PDF
    We present a simple model for neutrino dark matter in which neutrino masses arise radiatively and the solar neutrino data are explained via the MSW effect. The dark matter scale arises at the one-loop level with the MSW scale arises only in two loops. The model is compatible with all observational facts and allows observable νeντ or νμντ oscillation rates in the laboratory if the limits from primordial big bang nucleosynthesis (BBN) are taken conservatively. In addition, it can be probed by searching for muon number violating processes such as μ→ e+ γ, and μ→3 e. These rates can well lie within the sensitivities of present experiments. Finally, if we ignore BBN limits we can have also a common explanation for the atmospheric neutrino deficit via νμ oscillations to a sterile neutrino νs with maximal mixing and 10 -2-10 -3 eV 2

    Escape from washing out of baryon number in a two-zero-texture general Zee model compatible with the large mixing angle MSW solution

    Full text link
    We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.Comment: 22 pages, 2 eps figures, Type set revtex

    Reconciling dark matter, solar and atmospheric neutrinos

    Get PDF
    We present models that can reconcile the solar and atmospheric neutrino data with the existence of a hot dark matter component in the universe. This dark matter is a quasi-Dirac neutrino whose mass mDM arises at the one-loop level. The solar neutrino deficit is explained via nonadiabatic conversions of electron neutrino to a sterile neutrino and the atmospheric neutrino data via maximal muon neutrino to tau neutrino oscillations generated by higher order loop diagrams. For mDM∼30 eV the radiative neutrino decay can lead to photons that can ionize interstellar hydrogen. In one of the models one can have observable νe to ντ oscillation rates, with no appreciable muon neutrino oscillations at accelerator experiments. In addition, there can be observable rates for tau number violating processes such as τ→3e and τ→e+γ. In the other model one can have sizeable νe to νμ oscillation rates, as well as sizeable rates for muon number violating processes such as μ→e+γ, μ→e+majoron and μ→3e

    Leading Order Textures for Lepton Mass Matrices

    Get PDF
    In theories with three light neutrinos, certain simplicity assumptions allow the construction of a complete list of leading order lepton mass matrices. These matrices are consistent with m_{tau} \neq 0, Delta m^2_{12} \ll Delta m^2_{23}, theta_{23} approx 1, and theta_{13} = 0, as suggested by measurements of atmospheric and solar neutrino fluxes. The list contains twelve generic cases: two have three degenerate neutrinos, eight have two neutrinos forming a Dirac state, and in only two cases is one neutrino much heavier than the other two. For each of these twelve generic cases the possible forms for the perturbations which yield m_{mu} are given. Ten special textures are also found.Comment: 17 pages, added reference

    Supernova Bounds on Majoron-emitting decays of light neutrinos

    Get PDF
    Neutrino masses arising from the spontaneous violation of ungauged lepton-number are accompanied by a physical Goldstone boson, generically called Majoron. In the high-density supernova medium the effects of Majoron-emitting neutrino decays are important even if they are suppressed in vacuo by small neutrino masses and/or small off-diagonal couplings. We reconsider the influence of these decays on the neutrino signal of supernovae in the light of recent Super-Kamiokande data on solar and atmospheric neutrinos. We find that majoron-neutrino coupling constants in the range 3\times 10^{-7}\lsim g\lsim 2\times 10^{-5} or g \gsim 3 \times 10^{-4} are excluded by the observation of SN1987A. Then we discuss the potential of Superkamiokande and the Sudbury Neutrino Observatory to detect majoron neutrino interactions in the case of a future galactic supernova. We find that these experiments could probe majoron neutrino interactions with improved sensitivity.Comment: 28 pages, 5 figure

    SO(3) Gauge Symmetry and Neutrino-Lepton Flavor Physics

    Full text link
    Based on the SO(3) gauge symmetry for three family leptons and general see-saw mechanism, we present a simple scheme that allows three nearly degenerate Majorana neutrino masses needed for hot dark matter. The vacuum structure of the spontaneous SO(3) symmetry breaking can automatically lead to a maximal CP-violating phase. Thus the current neutrino data on both the atmospheric neutrino anomaly and solar neutrino deficit can be accounted for via maximal mixings without conflict with the current data on the neutrinoless double beta decay. The model also allows rich interesting phenomena on lepton flavor violations.Comment: 10 pages, Revtex, no figures, minor changes and references added, the version to appear in Phys. Rev.

    Lepton Mixing Matrix in Standard Model Extended by One Sterile Neutrino

    Full text link
    We consider the simplest extension of the standard electroweak model by one sterile neutrino that allows for neutrino masses and mixing. We find that its leptonic sector contains much less free physical parameters than previously realized. In addition to the two neutrino masses, the lepton mixing matrix in charged current interactions involves (n-1) free physical mixing angles for n generations. The mixing matrix in neutral current interactions of neutrinos is completely fixed by the two masses. Both interactions conserve CP. We illustrate the phenomenological implications of the model by vacuum neutrino oscillations, tritium beta decay and neutrinoless double beta decay. It turns out that, due to the revealed specific structure in its mixing matrix, the model with any n generations cannot accommodate simultaneously the data by KamLAND, K2K and CHOOZ.Comment: 14 pages, no figures; version 2: (1) added a short paragraph at the end of subsec 2.2 to record the counting of physical parameters for any numbers of generations and sterile neutrinos for completeness; (2) added a note in ref list, item [18] to quote and comment on an earlier work; (3) added the second paper to ref list, item [17]; (4) fixed typo
    corecore