648 research outputs found

    Indledende miljømæssig vurdering af disponeringen af træaffald i Danmark

    Get PDF

    Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation

    Get PDF
    We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.Comment: 7 pages, 4 figure

    Evaluating the impact of incentives on clinical trial participation: Protocol for a mixed methods, community-engaged study

    Get PDF
    Background: Monetary incentives in research are frequently used to support participant recruitment and retention. However, there are scant empirical data regarding how researchers decide upon the type and amount of incentives offered. Likewise, there is little guidance to assist study investigators and institutional review boards (IRBs) in their decision-making on incentives. Monetary incentives, in addition to other factors such as the risk of harm or other intangible benefits, guide individuals' decisions to enroll in research studies. These factors emphasize the need for evidence-informed guidance for study investigators and IRBs when determining the type and amount of incentives to provide to research participants. Objective: The specific aims of our research project are to (1) characterize key stakeholders' views on and assessments of incentives in biomedical HIV research; (2) reach consensus among stakeholders on the factors that are considered when choosing research incentives, including consensus on the relative importance of such factors; and (3) pilot-test the use of the guidance developed via aims 1 and 2 by presenting stakeholders with vignettes of hypothetical research studies for which they will choose corresponding incentive types. Methods: Our 2-year study will involve monthly, active engagement with a stakeholder advisory board of people living with HIV, researchers, and IRB members. For aim 1, we will conduct a nationwide survey (N=300) among people living with HIV to understand their views regarding the incentives used in HIV research. For aim 2, we will collect qualitative data by conducting focus groups with people living with HIV (n=60) and key informant interviews with stakeholders involved in HIV research (people living with HIV, IRB members, and biomedical HIV researchers: n=36) to extend and deepen our understanding of how incentives in HIV research are perceived. These participants will also complete a conjoint analysis experiment to gain an understanding of the relative importance of key HIV research study attributes and the impact that these attributes have on study participation. The data from the nationwide survey (aim 1) will be triangulated with the qualitative and conjoint analysis data (aim 2) to create 25 vignettes that describe hypothetical HIV research studies. Finally, individuals from each stakeholder group will select the most appropriate incentive that they feel should be used in each of the 25 vignettes (aim 3). Results: The stakeholder advisory board began monthly meetings in March 2021. All study aims are expected to be completed by December 2022. Conclusions: By studying the role of incentives in HIV clinical trial participation, we will establish a decision-making paradigm to guide the choice of incentives for HIV research and, eventually, other types of similar research and facilitate the ethical recruitment of clinical research participants

    The Political Dimension of Vulnerability: Implications for the Green Climate Fund

    Get PDF
    As the availability of adaptation finance for developing countries increases, so does the need for a transparent way of prioritising countries for the allocation of money. It is intuitive that some countries are more vulnerable to climate change than others, and that countries that are particularly vulnerable should be given priority for adaptation finance. However, research has shown that science cannot be relied upon for a single objective ranking of vulnerability. This article analyses how the Global Climate Change Alliance (GCCA), the Pilot Program for Climate Resilience (PPCR) and the Adaptation Fund currently make decisions on adaptation finance allocations. It finds that each of the funds uses vulnerability to prioritise among countries, but the criteria applied vary and other criteria also play a role. Thus, vulnerability is politically, as well as scientifically, ambiguous. The Cancun Agreements have not resolved this, leaving a challenge for the Green Climate Fund

    Neutrino masses: From fantasy to facts

    Get PDF
    Theory suggests the existence of neutrino masses, but little more. Facts are coming close to reveal our fantasy: solar and atmospheric neutrino data strongly indicate the need for neutrino conversions, while LSND provides an intriguing hint. The simplest ways to reconcile these data in terms of neutrino oscillations invoke a light sterile neutrino in addition to the three active ones. Out of the four neutrinos, two are maximally-mixed and lie at the LSND scale, while the others are at the solar mass scale. These schemes can be distinguished at neutral-current-sensitive solar & atmospheric neutrino experiments. I discuss the simplest theoretical scenarios, where the lightness of the sterile neutrino, the nearly maximal atmospheric neutrino mixing, and the generation of Δm2\Delta {m^2}_\odot & Δm2atm\Delta {m^2}_{atm} all follow naturally from the assumed lepton-number symmetry and its breaking. Although the most likely interpretation of the present data is in terms of neutrino-mass-induced oscillations, one still has room for alternative explanations, such as flavour changing neutrino interactions, with no need for neutrino mass or mixing. Such flavour violating transitions arise in theories with strictly massless neutrinos, and may lead to other sizeable flavour non-conservation effects, such as μe+γ\mu \to e + \gamma, μe\mu-e conversion in nuclei, unaccompanied by neutrino-less double beta decay.Comment: 33 pages, latex, 16 figures. Invited Talk at Ioannina Conference, Symmetries in Intermediate High Energy Physics and its Applications, Oct. 1998, to be published by Springer Tracts in Modern Physics. Festschrift in Honour of John Vergados' 60th Birthda

    Partial Deconfinement in Color Superconductivity

    Full text link
    We analyze the fate of the unbroken SU(2) color gauge interactions for 2 light flavors color superconductivity at non zero temperature. Using a simple model we compute the deconfining/confining critical temperature and show that is smaller than the critical temperature for the onset of the superconductive state itself. The breaking of Lorentz invariance, induced already at zero temperature by the quark chemical potential, is shown to heavily affect the value of the critical temperature and all of the relevant features related to the deconfining transition. Modifying the Polyakov loop model to describe the SU(2) immersed in the diquark medium we argue that the deconfinement transition is second order. Having constructed part of the equation of state for the 2 color superconducting phase at low temperatures our results are relevant for the physics of compact objects featuring a two flavor color superconductive state.Comment: 9 pp, 4 eps-figs, version to appear in PR

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Probabilistic frames: An overview

    Full text link
    Finite frames can be viewed as mass points distributed in NN-dimensional Euclidean space. As such they form a subclass of a larger and rich class of probability measures that we call probabilistic frames. We derive the basic properties of probabilistic frames, and we characterize one of their subclasses in terms of minimizers of some appropriate potential function. In addition, we survey a range of areas where probabilistic frames, albeit, under different names, appear. These areas include directional statistics, the geometry of convex bodies, and the theory of t-designs
    corecore