62 research outputs found

    REMOVED: A Multi–dimensional Model for Scaling in Reverse Osmosis Devices

    Get PDF
    This article has been removed: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been removed at the request of the Executive Publisher.This article has been removed because it was published without the permission of the author(s)

    Biofouling of spiral wound membrane systems

    No full text
    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the coming decades. One of the most serious problems in RO/NF applications is biofouling - excessive growth of biomass - affecting the performance of the RO/NF systems due to e.g. (i) increase in pressure drop across membrane elements (feed-concentrate channel), (ii) decrease in membrane permeability, (iii) increase in salt passage. These phenomena result in the need to increase the feed pressure to maintain constant production and to clean the membrane elements chemically. In practice, the first phenomenon is most dominant. The objective of this study was to relate biomass accumulation in spiral wound RO and NF membrane elements with membrane performance and hydrodynamics and to determine parameters influencing biofouling. The focus of this research was on the development of biomass in the feed-concentrate (feed-spacer) channel and its effect on pressure drop and flow distribution. These detailed studies can be used to develop an integral strategy to control biofouling in spiral wound membrane systems. Problem analysis Studies to diagnose biofouling in 15 full-scale RO and NF membrane installations with varying feed water types showed that (i) highest biomass concentrations were found at the installation feed side, (ii) the biomass related parameter adenosine-tri-phosphate was suitable for biofouling diagnosis in membrane element autopsies, (iii) measurements of biological parameters in the water were not appropriate in quantifying biofouling, and (iv) there is a need for a representative monitor and sensitive accurate pressure data to enable a reliable evaluation of the development of biofouling (Chapter 2). Based on the practical observations it was decided to develop a set of tools to study biofouling at controlled conditions. Method development A monitor was developed (Chapter 3) in combination with testing of a sensitive differential pressure drop transmitter (Chapter 4). This small monitor named Membrane Fouling Simulator (MFS) uses the same membranes and spacers as present in commercial membrane elements, has similar hydrodynamics and is equipped with a sight window. The MFS is an effective scaled-down version of a full-scale system and allows to study the biofouling process occurring in the first 0.20 m of RO/NF elements. Magnetic Resonance Imaging (MRI) provided in-situ, non-invasive, and spatially-resolved measurements of biofouling and its impact on hydrodynamics and mass transport in spiral wound membrane elements as well as in the MFS (Chapter 5). A three-dimensional computational model was developed to simulate biofouling in membrane elements, with feed spacer geometry as used in practice (Chapter 6). The model combines fluid dynamics, solute transport and biofouling. The methods described in the first part of the thesis have been used to increase the understanding of fundamental aspects of biofouling. Basic studies The development of biomass and related increase in pressure drop was not influenced by the permeate production in the elements (Chapter 7). Irrespective whether a flux was applied or not, the feed-concentrate channel pressure drop and biofilm amount increased in RO and NF membranes in monitor, test-rig, pilot and full-scale installation. Mass transport calculations supported that permeate production plays a minor role in the development of biofouling. Since fouling occurred irrespective of permeate production, the critical flux concept stating that “below a critical flux no fouling occurs” is not applicable to control RO/NF biofouling in extensively pretreated water. In essence, biofouling is a feed spacer channel problem (Chapter 8). This observation is based on (i) practical data and supported by (ii) in-situ visual observations of fouling accumulation using the MFS sight window, (iii) in-situ non-destructive observations of fouling accumulation and velocity distribution profiles using MRI, and (iv) differences in pressure drop and biomass development in monitors with and without feed spacer. MRI studies showed that already a restricted biofilm accumulation on the feed channel spacer influenced the velocity distribution profile strongly, leading to a strong decrease of the effective surface area in the membrane module and probably increasing the salt concentration in the dead-zones of the element leading to increased salt passage. Three-dimensional numerical simulations of biofilm formation and fluid flow were executed and compared with MRI and MFS studies (Chapter 9). The simulations showed similar (i) pressure drop development and (ii) patterns in flow distribution and channelling as observed in MRI and MFS studies. Feed spacers showed to have an essential role in biofouling, and are considered a prime target for improving the membrane elements. Based on the gained insights several potential methodologies to minimize the impact of biofouling have been studied and described in the last chapters of the thesis. Control studies The effect of substrate concentration, linear flow velocity, substrate load and flow direction on pressure drop development and biofilm accumulation was investigated in MFSs (Chapter 10). The pressure drop increase was related to the amount of accumulated biomass and linear flow velocity. Biomass accumulation was related to the substrate load. A flow direction change in the pressure vessels instantaneously reduced the pressure drop, accentuating that hydrodynamics, spacers and pressure vessel configuration offer possibilities to restrict the pressure drop increase caused by accumulated biomass. The impact of flow regime on pressure drop, biomass accumulation and morphology was studied (Chapter 11). In RO and NF membrane elements, at linear flow velocities as applied in practice voluminous and filamentous biofilm structures developed in the feed spacer channel, causing a significant increase in feed channel pressure drop. The amount of accumulated biomass was independent of the applied shear, depending on the substrate load. A high shear force resulted in more compact and less filamentous biofilm structure compared to a low shear force, causing a lower pressure drop increase. A biofilm grown at low shear was easier to remove during water flushing compared to a biofilm grown at high shear. Flow regimes manipulated biofilm morphology affecting membrane performance, enabling new approaches to control biofouling. Phosphate limitation as a method to control biofouling was investigated at a full-scale RO installation, characterized by low phosphate and substrate concentrations in the feed water and low biomass amounts in lead membrane modules. MFS studies showed that phosphate limitation restricted the pressure drop increase and biomass accumulation, even in the presence of high substrate concentrations (Chapter 12). Outlook Most past and present methods to control biofouling have not been very successful. Based on insights obtained by the studies described in this thesis, an overview is given of several potential complementary approaches to solve biofouling (Chapter 13). An integrated approach for biofouling control is proposed, based on three corner stones: (i) equipment design and operation, (ii) biomass growth conditions, and (iii) cleaning agents. Although in this stage chemical cleaning and biofouling inhibitor dosing seem inevitable to control biofouling, it is expected that in future – also because of sustainability and costs reasons - membrane systems will be operated without or with minimal chemical cleaning and dosing.BiotechnologyApplied Science

    Insignificant impact of chemotactic responses of Pseudomonas aeruginosa on the bacterial attachment to organic pre-conditioned RO membranes

    No full text
    We investigated the impact of conditioning compositions on the way bacteria move and adhere to reverse osmosis (RO) membranes that have been pre-conditioned by organic compounds. We used humic acid (HA), bovine serum albumin (BSA), and sodium alginate (SA) to simulate conditioning layers on the RO membranes. First, we investigated the chemotactic responses of Pseudomonas aeruginosa PAO1 to the organic substances and the impact of changes in physicochemical characteristics of pre-conditioned membranes on bacterial attachment. Second, we observed bacterial attachment under the presence or absence of nutrients or microbial metabolic activity. Results showed that there was no relationship between the chemotactic response of P. aeruginosa PAO1 and the organic substances, and the changes in hydrophobicity, surface free energy, and surface charge resulting from changing the composition of the conditioning layer did not seem to affect bacterial attachment, whereas changing the roughness of the conditioned membrane exponentially did (exponential correlation coefficient, R2 = 0.85). We found that the initial bacterial attachment on the membrane surface is influenced by (i) the nutrients in the feed solution and (ii) the microbial metabolic activity, whereas the chemotaxis response has a negligible impact. This study would help to establish a suitable strategy to manage bacterial attachment.BT/Environmental Biotechnolog

    Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems

    No full text
    A critical problem in seawater reverse osmosis (RO) filtration processes is biofilm accumulation, which reduces system performance and increases energy requirements. As a result, membrane systems need to be periodically cleaned by combining chemical and physical protocols. Nutrient limitation in the feed water is a strategy to control biofilm formation, lengthening stable membrane system performance. However, the cleanability of biofilms developed under various feed water nutrient conditions is not well understood. This study analyzes the removal efficiency of biofilms grown in membrane fouling simulators (MFSs) supplied with water varying in phosphorus concentrations (3 and 6 μg P·L-1 and with constant biodegradable carbon concentration) by applying hydraulic cleaning after a defined 140% increase in the feed channel pressure drop, through increasing the cross-flow velocity from 0.18 m s-1 to 0.35 m s-1 for 1 h. The two phosphorus concentrations (3 and 6 μg P·L-1) simulate the RO feed water without and with the addition of a phosphorus-based antiscalant, respectively, and were chosen based on measurements at a full-scale seawater RO desalination plant. Biomass quantification parameters performed after membrane autopsies such as total cell count, adenosine triphosphate, total organic carbon, and extracellular polymeric substances were used along with feed channel pressure drop measurements to evaluate biofilm removal efficiency. The outlet water during hydraulic cleaning (1 h) was collected and characterized as well. Optical coherence tomography images were taken before and after hydraulic cleaning for visualization of biofilm morphology. Biofilms grown at 3 μg P·L-1 had an enhanced hydraulic cleanability compared to biofilms grown at 6 μg P·L-1. The higher detachment for biofilms grown at a lower phosphorus concentration was explained by more soluble polymers in the EPS, resulting in a lower biofilm cohesive and adhesive strength. This study confirms that manipulating the feed water nutrient composition can engineer a biofilm that is easier to remove, shifting research focus towards biofilm engineering and more sustainable cleaning strategies.</p

    Online characterization of bacterial processes in drinking water systems

    No full text
    The use of traditional drinking water microbial quality monitoring methods, including heterotrophic plate counts (HPCs) and total coliform counts, are not only laborious and time-consuming but also do not readily allow identification of risk areas in the network. Furthermore, if areas of concern are identified, and mitigation measures are taken, it takes days before the effectiveness of these measures is known. This study identified flow cytometry (FCM) as an online sensor technology for bacterial water quality monitoring in the distribution network. We monitored the total bacterial cell numbers and biodiversity in a drinking water distribution system (DWDS) using an online FCM. Two parallel online FCM monitoring systems were installed on two different locations at a drinking water treatment plant (DWTP; Saudi Arabia) supplying chlorinated water to the distribution and in the network 3.6 km away from the DWTP. The FCMs were operated at the same time in parallel to assess the biological stability in DWDSs. The flow cytometric data was compared with the conventional water quality detection methods (HPC and total coliforms). HPC and total coliforms were constantly below the detection limits, while the FCM provided detectable total cell count data and enabled the quantification of changes in the drinking water both with time and during distribution. Results demonstrate the value of FCM as a tool for compliance monitoring and risk assessment of DWDSs.BT/Environmental Biotechnolog

    Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems

    No full text
    A critical problem in seawater reverse osmosis (RO) filtration processes is biofilm accumulation, which reduces system performance and increases energy requirements. As a result, membrane systems need to be periodically cleaned by combining chemical and physical protocols. Nutrient limitation in the feed water is a strategy to control biofilm formation, lengthening stable membrane system performance. However, the cleanability of biofilms developed under various feed water nutrient conditions is not well understood. This study analyzes the removal efficiency of biofilms grown in membrane fouling simulators (MFSs) supplied with water varying in phosphorus concentrations (3 and 6 μg P·L-1 and with constant biodegradable carbon concentration) by applying hydraulic cleaning after a defined 140% increase in the feed channel pressure drop, through increasing the cross-flow velocity from 0.18 m s-1 to 0.35 m s-1 for 1 h. The two phosphorus concentrations (3 and 6 μg P·L-1) simulate the RO feed water without and with the addition of a phosphorus-based antiscalant, respectively, and were chosen based on measurements at a full-scale seawater RO desalination plant. Biomass quantification parameters performed after membrane autopsies such as total cell count, adenosine triphosphate, total organic carbon, and extracellular polymeric substances were used along with feed channel pressure drop measurements to evaluate biofilm removal efficiency. The outlet water during hydraulic cleaning (1 h) was collected and characterized as well. Optical coherence tomography images were taken before and after hydraulic cleaning for visualization of biofilm morphology. Biofilms grown at 3 μg P·L-1 had an enhanced hydraulic cleanability compared to biofilms grown at 6 μg P·L-1. The higher detachment for biofilms grown at a lower phosphorus concentration was explained by more soluble polymers in the EPS, resulting in a lower biofilm cohesive and adhesive strength. This study confirms that manipulating the feed water nutrient composition can engineer a biofilm that is easier to remove, shifting research focus towards biofilm engineering and more sustainable cleaning strategies.BT/Environmental Biotechnolog

    Minimum net driving temperature concept for membrane distillation

    No full text
    In this study, we analyzed the heat requirement of membrane distillation (MD) to investigate the trade-off between the evaporation efficiency and driving force efficiency in a single effect MD system. We found that there exists a non-zero net driving temperature difference that maximizes efficiency. This is the minimum net driving temperature difference necessary for a rational operational strategy because below the minimum net driving temperature, both the productivity and efficiency can be increased by increasing the temperature difference. The minimum net driving temperature has a similar magnitude to the boiling point elevation (~0.5 °C for seawater), and depends on the properties of the membrane and the heat exchanger. The minimum net driving temperature difference concept can be used to understand the occurrence of optimal values of other parameters, such as flux, membrane thickness, and membrane length, if these parameters are varied in a way that consequently varies the net driving temperature difference.BT/Environmental Biotechnolog
    corecore