27 research outputs found

    Displaying the Heterogeneity of the SN 2002cx-like Subclass of Type Ia Supernovae with Observations of the Pan-STARRS-1 Discovered SN2009ku

    Full text link
    SN2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SNIa), and a member of the distinct SN2002cx-like class of SNeIa. Its light curves are similar to the prototypical SN2002cx, but are slightly broader and have a later rise to maximum in g. SN2009ku is brighter (~0.6 mag) than other SN2002cx-like objects, peaking at M_V = -18.4 mag - which is still significantly fainter than typical SNeIa. SN2009ku, which had an ejecta velocity of ~2000 kms^-1 at 18 days after maximum brightness is spectroscopically most similar to SN2008ha, which also had extremely low-velocity ejecta. However, SN2008ha had an exceedingly low luminosity, peaking at M_V = -14.2 mag, ~4 mag fainter than SN2009ku. The contrast of high luminosity and low ejecta velocity for SN2009ku is contrary to an emerging trend seen for the SN2002cx class. SN2009ku is a counter-example of a previously held belief that the class was more homogeneous than typical SNeIa, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN2009ku is an indication of the potential for these surveys to find rare and interesting objects.Comment: 7 pages, 3 figure

    Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey

    Get PDF
    The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (griz yP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3+3−2×10−5 and 8+2−1×10−5 that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range

    Toward Characterization of the Type IIP Supernova Progenitor Population: A Statistical Sample of Light Curves from Pan-STARRS1

    Get PDF
    In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of lsim 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches

    Rapidly Evolving and Luminous Transients from Pan-STARRS1

    Get PDF
    In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t 1/2) of less than 12 days and –16.5 > M > –20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g P1 – r P1 lsim –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043 erg s–1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M ☉) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr–1 Gpc–3 (4%-7% of the core-collapse SN rate at z = 0.2)
    corecore