2,444 research outputs found

    Field dependence of impact ionization coefficients in In0.53Ga0.47As

    Get PDF
    Electron and hole ionization coefficients in In/sub 0.53/Ga/sub 0.47/As are deduced from mixed carrier avalanche photomultiplication measurements on a series of p-i-n diode layers, eliminating other effects that can lead to an increase in photocurrent with reverse bias. Low field ionization is observed for electrons but not for holes, resulting in a larger ratio of ionization coefficients, even at moderately high electric fields than previously reported. The measured ionization coefficients are marginally lower than those of GaAs for fields above 250 kVcm/sup -1/, supporting reports of slightly higher avalanche breakdown voltages in In/sub 0.53/Ga/sub 0.47/As than in GaAs p-i-n diodes

    Design and fabrication of highly efficient non-linear optical devices for implementing high-speed optical processing

    Get PDF
    We present the design and fabrication of micro-cavity semiconductor devices for enhanced Two-Photon-Absorption response, and demonstrate the use of these devices for implementing sensitive autocorrelation measurements on pico-second optical pulses

    High-sensitivity two-photon absorption microcavity autocorrelator

    Get PDF
    A GaAs-AlAs microcavity device has been used as a photodetector in an autocorrelator for measuring the temporal pulsewidth of 1.5-/spl mu/m optical pulses. Enhancement of the two-photon absorption photocurrent due to the microcavity structure results in an autocorrelation (average power times peak power) sensitivity of 9.3/spl times/10/sup -4/ (mW)/sup 2/, which represents two orders of magnitude improvement when compared with conventional autocorrelators

    Two-photon absorption in microcavities for optical autocorrelation and sampling

    Get PDF
    We have designed novel semiconductor microcavity structures for the enhancement of the two-photon absorption (TPA) photocurrent. We report a TPA autocorrelation technique for short optical pulses that uses the microcavity structure instead of a second harmonic generation crystal. Knowledge of these characteristics is important for implementation in applications such as optical switching and sampling in optical time division multiplexed (OTDM) communications systems

    A novel approach towards two-photon absorption based detectors

    Get PDF
    Summary: We have demonstrated that the inherent inefficiency of the TPA process in semiconductors can be overcome by incorporating the semiconductor in a microcavity structure. Proof of concept devices with a 0.27μm Ga0.7Al0.3As active region and two Bragg reflectors with the cavity resonance of 890 nm were fabricated. We measured the TPA photocurrent of these devices and have demonstrated a factor of 12000 enhancement over a nonmicrocavity device at 890 nm. Our active length of 0.27 nm is as efficient as 5.4 mm without a microcavity, overcoming the very long detector lengths limiting the use of TPA in practical autocorrelators, optical switches and sampling devices for real telecommunication systems. The effect of the cavity is to enhance the intra-cavity optical intensity, which leads to an increase in the nonlinear response of the active region. We studied, theoretically and experimentally, the impact of the cavity on the temporal response and the sensitivity of the device, which are critical considerations for commercial applications. This cavity design has a 3 pico-second response time and the autocorrelation trace is comparable with the BBO crystal response for an input 1.6 ps pulse. Devices designed for 1550 nm have also been realised and our measurements indicate these two-photon absorption based detectors are potential candidates for optical autocorrelation of short optical pulses, and for optical switching and sampling in optical time division multiplexed (OTDM) communications systems

    Application of response surface methodology to laser-induced breakdown spectroscopy : influences of hardware configuration

    Get PDF
    Response Surface Methodology (RSM) was employed to optimise LIBS analysis of single crystal silicon at atmospheric pressure and under vacuum conditions (pressure ~10-6mbar). Multivariate analysis software (StatGraphics 5.1) was used to design and analyse several multi-level, full factorial RSM experiments. A Quality Factor (QF) was conceived as the response parameter for the experiments, representing the quality of the LIBS spectrum captured for a given hardware configuration. The QF enabled the hardware configuration to be adjusted so that a best compromise between resolution, signal intensity and signal noise could be achieved. The effect on the QF of simultaneously adjusting spectrometer gain, gate delay, gate width, lens position and spectrometer slit width was investigated, and the conditions yielding the best QF determined

    Importance of Estrus Expression Before Fixed-time AIon Conception Rates in Beef Cattle

    Get PDF
    Expression of estrus prior to fixed-time AI has been reported to strongly impact overall pregnancy success. Behavioral estrus is a visual indicator that a cow or heifer’s internal environment is prepared for breeding. Insemination of a cow or heifer after estrus has been expressed will yield greater pregnancy success due to adequate uterine environment, increased fertilization rates, increased accessory sperm numbers, and increased overall embryo survival. It can be difficult to analyze the effects of estrus on pregnancy success across studies due to differences in number of animals and proportion of animals exhibiting estrus per study. In order to accurately analyze such data, a meta-analysis was used to place all studies on an equal level, thus, eliminating study bias. In the present study, a meta-analysis was conducted using data available on 10,116 beef cows and heifers in 26 studies that utilized the 5 most common fixed-time AI protocols to examine the effect of expression of estrus prior to insemination on conception rates. The overall model indicated a positive effect of estrus on conception rates with cows expressing estrus before fixed-time AI having greater conception rates compared with those not exhibiting estrus. There are also numerous management factors that can influence expression of estrus. Data were available on 547 cows that were synchronized with a CIDR based fixed-time AI protocol for estrus for 2 to 4 years. Analysis of these cows indicated that days postpartum did not impact estrus expression. In contrast, Body Condition Score (BCS) influenced estrus expression with cows in a BCS of ≤ 4 having decreased expression of estrus compared to those with a BCS \u3e 4. Initiation of estrous cycles before the breeding season also influenced estrus expression, with anestrous cows having greater expression of estrus compared with estrus-cycling cows. Fixed-time AI protocols offer producers the added benefit of reduced labor needed for heat detection, but the results of this study indicate the importance of detecting an animal in estrus prior to breeding. In conclusion, among all currently recommended fixed-time AI protocols, cows expressing estrus before fixed-time AI had improved conception rates, and BCS and estrus-cycling status had the greatest influence on expression of estrus

    Microstructural Shear Localization in Plastic Deformation of Amorphous Solids

    Full text link
    The shear-transformation-zone (STZ) theory of plastic deformation predicts that sufficiently soft, non-crystalline solids are linearly unstable against forming periodic arrays of microstructural shear bands. A limited nonlinear analysis indicates that this instability may be the mechanism responsible for strain softening in both constant-stress and constant-strain-rate experiments. The analysis presented here pertains only to one-dimensional banding patterns in two-dimensional systems, and only to very low temperatures. It uses the rudimentary form of the STZ theory in which there is only a single kind of zone rather than a distribution of them with a range of transformation rates. Nevertheless, the results are in qualitative agreement with essential features of the available experimental data. The nonlinear theory also implies that harder materials, which do not undergo a microstructural instability, may form isolated shear bands in weak regions or, perhaps, at points of concentrated stress.Comment: 32 pages, 6 figure
    corecore