48 research outputs found

    On the spectra of infinite-dimensional Jacobi matrices

    Get PDF
    AbstractThe Green's function method used by Case and Kac is extended to include unbounded Jacobi matrices. As a first application an upper bound on the number of eigenvalues is calculated, using the method of Bargmann. Another bound is found using the Birman-Schwinger argument, which is valid for matrix orthogonal polynomials

    Fractal Functions and Wavelet Expansions Based on Several Scaling Functions

    Get PDF
    AbstractWe present a method for constructing translation and dilation invariant functions spaces using fractal functions defined by a certain class of iterated function systems. These spaces generalize the C0 function spaces constructed in [D. Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory71 (1992), 104-120] including, for instance, arbitrarily smooth function spaces. These new function spaces are generated by several scaling functions and their integer-translates. We give necessary and sufficient conditions for these function spaces to form a multiresolution analysis of L2R

    Fractional Moment Estimates for Random Unitary Operators

    Full text link
    We consider unitary analogs of dd-dimensional Anderson models on l2(Zd)l^2(\Z^d) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on parameters controlling the size of its off-diagonal elements. We adapt the method of Aizenman-Molchanov to get exponential estimates on fractional moments of the matrix elements of Uω(Uωz)1U_\omega(U_\omega -z)^{-1}, provided the distribution of phases is absolutely continuous and the parameters correspond to small off-diagonal elements of SS. Such estimates imply almost sure localization for UωU_\omega

    Localization for Random Unitary Operators

    Full text link
    We consider unitary analogs of 11-dimensional Anderson models on l2(Z)l^2(\Z) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of UωU_\omega is pure point almost surely for all values of the parameter of SS. We provide similar results for unitary operators defined on l2(N)l^2(\N) together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polynomials characterized by Verblunski coefficients of constant modulus and correlated random phases

    Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports

    Get PDF
    In this paper we present a survey about analytic properties of polynomials orthogonal with respect to a weighted Sobolev inner product such that the vector of measures has an unbounded support. In particular, we are focused in the study of the asymptotic behaviour of such polynomials as well as in the distribution of their zeros. Some open problems as well as some new directions for a future research are formulated.Comment: Changed content; 34 pages, 41 reference

    Asymptotics of block Toeplitz determinants and the classical dimer model

    Full text link
    We compute the asymptotics of a block Toeplitz determinant which arises in the classical dimer model for the triangular lattice when considering the monomer-monomer correlation function. The model depends on a parameter interpolating between the square lattice (t=0t=0) and the triangular lattice (t=1t=1), and we obtain the asymptotics for 0<t10<t\le 1. For 0<t<10<t<1 we apply the Szeg\"o Limit Theorem for block Toeplitz determinants. The main difficulty is to evaluate the constant term in the asymptotics, which is generally given only in a rather abstract form

    Relative asymptotics for orthogonal matrix polynomials with respect to a perturbed matrix measure on the unit circle

    Get PDF
    19 pages, no figures.-- MSC2000 codes: 42C05, 47A56.MR#: MR1970413 (2004b:42058)Zbl#: Zbl 1047.42021Given a positive definite matrix measure Ω supported on the unit circle T, then main purpose of this paper is to study the asymptotic behavior of L_n(\tilde{\Omega}) L_n(\Omega) -1} and \Phi_n(z, \tilde{\Omega}) \Phi_n(z, \tilde{\Omega}) -1} where Ω~(z)=Ω(z)+Mδ(zw)\tilde{\Omega}(z) = \Omega(z) + M \delta ( z - w), 1 1, M is a positive definite matrix and δ is the Dirac matrix measure. Here, Ln(·) means the leading coefficient of the orthonormal matrix polynomials Φn(z; •).Finally, we deduce the asymptotic behavior of Φn(omega,Ω~)Φn(omega,Ω)\Phi_n(omega, \tilde{\Omega}) \Phi_n(omega, \Omega) in the case when M=I.The work of the second author was supported by Dirección General de Enseñanza Superior (DGES) of Spain under grant PB96-0120-C03-01 and INTAS Project INTAS93-0219 Ext.Publicad

    Subcritical multiplicative chaos for regularized counting statistics from random matrix theory

    Get PDF
    For an N×N random unitary matrix U_N, we consider the random field defined by counting the number of eigenvalues of U_N in a mesoscopic arc of the unit circle, regularized at an N-dependent scale Ɛ_N>0. We prove that the renormalized exponential of this field converges as N → ∞ to a Gaussian multiplicative chaos measure in the whole subcritical phase. In addition, we show that the moments of the total mass converge to a Selberg-like integral and by taking a further limit as the size of the arc diverges, we establish part of the conjectures in [55]. By an analogous construction, we prove that the multiplicative chaos measure coming from the sine process has the same distribution, which strongly suggests that this limiting object should be universal. The proofs are based on the asymptotic analysis of certain Toeplitz or Fredholm determinants using the Borodin-Okounkov formula or a Riemann-Hilbert problem for integrable operators. Our approach to the L¹-phase is based on a generalization of the construction in Berestycki [5] to random fields which are only asymptotically Gaussian. In particular, our method could have applications to other random fields coming from either random matrix theory or a different context

    Lyapunov stability analysis of higher-order 2D systems

    No full text
    We prove a necessary and sufficient condition for the asymptotic stability of a 2D system described by a system of higher-order linear partial difference equations. We show that asymptotic stability is equivalent to the existence of a vector Lyapunov functional satisfying certain positivity conditions together with its divergence along the system trajectories. We use the behavioral framework and the calculus of quadratic difference forms based on four-variable polynomial algebra
    corecore