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The Green’s function method used by Case and Kac is extended to include 
unbounded Jacobi matrices. As a first application an upper bound on the number 
of eigenvalues is calculated, using the method of Bargmann. Another bound is 
found using the Birman-Schwinger argument, which is valid for matrix orthogonal 
polynomials. 0 1988 Academic Press, Inc. 

I. INTRODUCTION 

Let I2 I> D(J) L I2 be a self-adjoint operator with the representation 

Je,=a(n+l)e,+, +b(n)e,+4n)e,-,, n = 1, 2, . . . (1.1) 

Je, = a(l) e, + b(0) eO. (1.2) 

The spectrum of .Z, a(J), is the set of all x such that (J-xl))’ is not a 
bounded linear operator on I,, and 0J.Z) c a(J) is the set of all x such that 
(J-xl) ’ is not defined. cess(J) (Reed and Simon [ 18]), the essential 
spectrum of J, is the set of all real 1 for which PcA-8,A+,j(J) is inlinite- 
dimensional for all E > 0. Here P, = x0(J) is a spectral projection of J onto 
0, Q a Bore1 subset of R. Let p(l, n) be the orthonormal polynomials 
associated with J and for each n let A,,, < An2 c An3 c . .. < I,, be the 
zeros of p(n, n). Setting p(J) = limi, m lim,, o. A,,; and z(J) = 
limj,, lim,,, A.“--j+~, one finds that o,,,(J) c [p, r] with p and z being, 
respectively, the largest and smallest points in cess(J) [4]. 

A question that has been of recent interest (Geronimo and Case [14], 
Chihara [7-91, Chihara and Nevai [lo], and Geronimo [ 13)) is can one 
obtain bounds on the number of eigenvalues of J in [a, r]‘? In [13] an 
upper bound on the number of eigenvalues of J is given when J is a boun- 
ded operator, using an argument first developed by Bargmann [2]. Here 
we extend the argument to unbounded operators and use a different 
argument due to Birman [ 33 and Schwinger [21] to obtain other bounds. 
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We proceed as follows: in Section II we construct a general comparison 
equation using the Green’s function, which allows us (Section III) to 
obtain an upper bound on the number of eigenvalues of J using 
Bargmann’s argument. In Section IV a modification of the Birman 
Schwinger argument due to Fonda and Ghirardi [ 111 is used which gives 
an alternative upper bound on the number of eigenvalues of J. This bound 
is valid even if the entries in J are themselves matrices. 

II. CONSTRUCTION OF THE COMPARISON EQUATION 

Given a”(n + l), b’(n) E C, a”(n + 1) # 0 for all n > 0 we construct the 
unique solution to the equation 

aO(n + 1) pO(11, n + 1) + b”(n) pO(A, n) + P(n) pO(L, n - 1) 

=kpO(A,n), n=o, 1,2, . ..) (11.1) 

satisfying the initial conditions 

PO(J, 0) = 1, pO( A., - 1) = 0. (11.2) 

With these polynomials we now construct the unique (Green’s function) 
solution to the equation 

a”@ + 1) G,(& n + 1, m) + b’(n) Gi(1, n, m) + a’(n) Gi(& n - 1, m) 

- lG1@, n, m) = b,,,,, m> -l,naO, (II.3 

with boundary conditions 

G,(A n, m) =O, n>m. (11.4) 

The solution is (Atkinson [ 1 ] ) 

0, n>,m 

G,(k n, m) = 
PW, ml P”(4 n) - P%, n) PO@, m) 

(11.5) 

WPYY PO1 
7 -l<n<m, 

where py(lz, m) is another solution of (II.1 ) which is linearly independent of 
~‘(1, m) and W[py, p”] is the Wronskian of py and p”, i.e., 

UP:, PO]= a’@ + ~)CP:(& n + 1) ~~(4 n) - ~‘(1, n) ~‘(4 n + 1)1, (11.6) 

which is independent of n (Case [S]). 
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There are two representations of G,(I, n, m) which we will need later and 
in order to exhibit these representations we introduce other solutions of 
(II. 1). To this end, let #“‘(A, n), k > 0, be the solution of 

a”(n + k + 1) pCk’(13, n + 1) + b”(n + k) pCk’(l, n) + a”(n + k) pCk’(A, n - 1) 

= @yl, n), n = 0, 1, 2, . ..) (11.7) 

satisfying the initial conditions 

p’yl, 0) = 1, p’k’( 1, - 1) = 0. (11.8) 

In the special case where the polynomials {pO(n, n)> are orthogonal with 
respect to a unique measure u” supported on R we define the functions of 
the second kind Q”(L, n) as 

Q”(tl, n) = jspz duo(x), n = 0, 1, 2, . ..) I$ s, (11.9) 

where s is the support of u’. An important property of Q”(L, n) is that 
{ Q”(l, n)} E l2 for A 4 O(L). 

LEMMA (II.1 ). G,(IZ, n, m) has the representation 

a”(n + 1) G1(l, n, m) = 
0, n>m 

p@+l)(A, m-n - l), -l<n<m. 
(11.10) 

Furthermore ij the moment problem is determined G,(I, n, m) can also be 
represented by 

“(” n’ m)= 

0, n>m 

Q’(A., n) p”(A, m) - Q”(A, m) ~‘(1, n), O<n<m. 
(11.11) 

Proof: From (11.3), (11.4), and (11.8) one has that 

a”(n + 1) G,(L, n, n + 1) = 1 = p’“+“(I, 0). (11.12) 

Setting m = n + I in (11.3) and then substituting (11.10) into (11.3), we find 
that the lemma will be demonstrated if it is shown that 

I= 1, 2, . . . . (11.13) 

But from (11.7) we see that ~‘“‘(5 1), pCn+‘)(A, I- l), and ~(‘+~)(;i, 1- 2) 
satisfy a three-term recurrence formula having the same coefficients. 
Therefore they are not linearly independent and we can write p’“‘(A, 1) = 

640/53/3-2 
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Ap’“+“(l, l- 1) + Bp (n+ *‘(A, I- 2), where A and B are independent of 1. A 
and B can now be obtained by setting I= 1 and I = 2 in the above equation 
and solving the resulting linear system. To prove the second part we note 
that given (11.9) we find from (11.7) that a’(O) Q”(A, - 1) = 1, and 
consequently that W[Q”, p”] = -1. This implies that Q’(A., n) is linearly 
independent of ~‘(1, n) and (11.11) follows from (11.5). 

Given another system of polynomials {p(A, n)}, satisfying the equation 

a(n + 1) p(A, n + 1) + h(n) p(& n) + a(n) p(A, n - 1) = @(A, n), 

n=O, 1, 2, . . . (11.14) 

with initial conditions 

P(k O)= 1, p(lz, -l)=O (11.15) 

and with a(n + 1 ), b(n) E C, a(n + 1) # 0 for all n > 0, we seek to express the 
above polynomials in terms of the (0) system. To this end, multiplying 
(11.14) by a, = l-I;= r (a(i)la a(0) = 1, and setting 

we find 

d(A n) = a, Ah n), (11.16) 

aO(n + 1) acn, n + 1) + b(n) jqn, n) + 44* 0 $(A, n - 1) = @(A, n), 
a (n) 

n=O, 1,2 ,..., (11.17) 

where u’(O) = 1. Multiplying (11.7) by p(A, n) and (11.17) by G,(& n, m), 
subtracting one from the other, and then summing on n from n = j to 
n = cc gives the equation 

4A’ fW, m) = a”(j) G,(A j- 1, m) B(A j) -- uO( j) GI(A j, m) AA j - 1) 

m-l 
+ 2 W, m, A)JW, n), m = j, j+ 1, . . . . 

n=j 

where 

M4 m, 1) = (b’(n) - b(n)) G,(A, 4 m) 

u(n+ 1)2 
uO(n + 1)2 > 

G,(I, n + 1, m). (11.19) 

Thus we have shown 
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THEOREM (11.1). Given an arbitrary set of polynomials satisfying (11.14) 
and (11.15) with a(n + l), b(n)E C, a(n + 1) #O, n> 0, the scaled 
polynomials given by (11.17) satisfy (11.18), where G,(A, n, m) is the solution 
of (11.3) and (11.4), with a”(n+ l), b’(n)E C, a”(n + l)#O, n 20, and 
a”(0) = 1. 

III. AN UPPER BOUND ON THE NUMBER OF EIGENVALUES OF J 

Let J: D(J) + I,, where D(J) is the domain of J, be a self-adjoint 
operator with the representation 

Je,=a(n+ l)e,+, + b(n) e, + a(n) e, -, , n = 1, 2, . . . 

Jeo=a(l)e,+b(0)eo. 
(111.1) 

Here {e,} is the natural basis in 12, and a(i) > 0, i > 0. The problem we are 
interested in is can we find an upper bound on the number of eigenvalues 
of J (the number of solutions of .@ = A$, $ ED(J)) that lie above the 
essential spectrum (T,,,? 

DEFINITION. Let J and Jo be Jacobi matrices and let J+ be the Jacobi 
matrix whose off diagonal elements a+ (i) are 

a+(i)= 
1 
44, 
a”(4, 

4i)>a”(OT i= 1 2 
a(i) <a’(i), ’ ’ “. 

(111.2) 

and whose diagonal elements b+(i) satisfy 

b + (9 = 
b(i), 
ho(i), 

WPb”(~)> i=. 1 2 
b(i)<b’(i), ’ ’ 

9 .... (111.3) 

LEMMA (111.1). Let ~(J)<r(J+)<co and Loa?( Let N,+,(A,)(N,+(IZ,)) 
be the number of eigenvalues of J+(J) greater than A,, then N:(l,) < N>+ (A,). 

Prooj Since NJ’ (A,) is equal to the number of changes in sign p(A,, n), 
n = 0, 1) 2, . ..) and since b+(i) > b(i) and a+(i) 2 a(i), the result is a con- 
sequence of Sturm’s comparison theorem (Fort [ 12, p. 152, Theorem 1 I). 

Let { fi’ (A, n) } be the scaled polynomials associated with J+ (satisfying 
(11.14) and (11.15) but resealed according to (11.16)). We now prove 

LEMMA (111.2). Suppose a’(O) = 1, 

(i) G,(1,,i,k)>O, k>i> -1, 

(ii) G,(Ao, i, k) < G1(Ao, 1, k) < G1(lo, -1, k), 16 i, 
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(iii) sign p+(A,, j) = constant, m<j<n<co, 

(iv) fi+(&,n)=O or sign$+(&, j)=sign@+(&,n)= -signj?+(&, 
n+l), m<j<n, and 

(v) fi+(A,, m) = 0 or -sign $+(&, m - 1) = sign fi+(&, m) = 
sign @ + (A,, j), m < j < n. Then 

a”(i+ 1) G,(I,, - 1, i). (111.4) 

Proof The proof breaks up into two cases: Case 1, b’(A,, m) = 0, and 
Case 2, sign /?+(A,, m) = -sign @+(A,, m - 1). 

Case 1. Using (111.2) and (111.3) in (11.18) yields 

a+@,> k) 
B+(lo,m+l) 

= u”(m + 1) G,(A,, m, k) 

k-l 

- c i=m+ I ii 

b+(i) - b’(i) 
aO(i+ 1) G,@o, i, k) 

+ l -u+(i+ l)* 
aO(i+ 1)2 

G,(&, i+ 1, k) 

x u”(i + 1) 
p+tno, 4 

fi+(A,, m+ 1)’ 
(111.5) 

Since B'(~o, k)/fi+(A,, m + 1) > 0, m + 1 < k < n, (111.5) implies that 
B+(~~,k)/b+(~~,m+ l)<u’(m+ 1) G,(J.,, m, k), m+ 1 <k-cm Now sub- 
stituting these results into (1115) then using the fact that 
$‘(A,, n)/P+(l,, m + 1) ~0 ((iii) and (iv)) yields 

n-l 
Gl(lo, m, n) < 1 

b+(i)-b’(i) 
Gl(Ao, i, n) 

i=m+ 1 u’(i+ 1) 

+ 1 -u+(i+ l)* 
uO(i + 1)2 

G,(A,, i+ 1, n) u’(i+ 1) G1(lo, m, i). 

(111.6) 

It follows from (ii) above that we can replace G,(A,, i, n) and 
G,(Ao, i+ 1, n) by G,(I,, m, n), which can then be eliminated from (111.6). 
Now replacing G,(L,, m, i) by Gl(lo, - 1, i) using (ii) gives the result. 

Case 2. In this case we begin with 
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@‘(no? k) a+(m)*fi+(AO, m- 1) 

B+(ioy m) 
= a’(m) Gl(Ao, m - 1, k) -0 

a 0-N B+(Jo4 
G1(109 m, k) 

- G,Uo, i, k) 

+ 1 -u+(i+ l)* B+Uo, 9 
u’(i+ l)* b+@,, m)’ 

(111.7) 

Since $+(A,, m - l)/jj’(n,, m) < 0 we have from above that 

B+(no, k) 
B+fJo, m 

GIQo, m - 1, k), 

where (ii) has been used. Again using the fact that p’(J,, n)/p+(lo, m) ~0 
and (ii) above in (111.7) yields 

G1tJo, i, n) 

+ , -u+(i+ l)* 
u’(i+ l)* 

Gl(lo, i+ 1, n) u’(i+ 1) G,(IZo, m- 1, i). 

(111.8) 

The result now follows by using (ii) once again, 

THEOREM (111.1). Given f choose Jo such that ?(.I) < z(JO) = Z(J+ ), 
where J+ is given by (111.2) and (111.3). Suppose that fir ilo> t(J”), 
0 < G,@,, n, m) < G,(I,, n, m) < G,(A,, - 1, m), - 1 < k < n c m, with 
u’(O) = 1. Then 

N,f(~o)6N,+,(~o) 
<f 

b+(i)-b’(i) 

i=O u’(i+ 1) I I 

+ 1 -u+(i+ l)* 
u”(i + 1)’ 

u’(i+ 1) G,(I,, - 1, i). 

ProoJ: The theorem follows from Lemma (111.1) and Lemma (111.2). 

COROLLARY (111.1). Given J choose Jo such that p(J) > p(J’) = p(J- ), 
where the coefficients of J- are chosen us a-(i) = a+(i) and 

b-(i) = 
b’(i), b(i) 2 b’(i) 
b(i), b(i) < b’(i). 
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Furthermore suppose that for A0 Q p(J’), 0 < JG,(A,, n, m)l < [G,(A,, k, m)[ 
d IGl(Ao, -l,m)l, -1 <k<n<m, with a’(O)= 1. Let N;(A,) denote the 
number of eigenvalues of J less than A,, then 

<f b-(i)-b’(i) 
a’(i+ 1) 

a’(i+ 1) IG,(I,, - 1, i)l. 
i=O 

Proof: Setting p-(2, n) = (-1)” p( -1, n) and ~~(2, n) = (- 1)” 
p”( -A, n) in (11.14) and (III), respectively, then using Theorem (III. 1) 
gives the result. 

EXAMPLE (111.1) (Tchebychev). Setting a’(n)= 4 and b’(n)=O, one 
finds r 0, Gl(An,m)= m-n-Z-(m-n) 

2( 
Z 1 

z-l/z ’ 

with z = A - dfi. Equation (11.19) becomes with j=O 

v% ml = 
1 -z2(m+ 1) 

1-z’ 

narn 
(111.9) 

-l,<n<m 

m-l 

+ 1 (1 -4a(n+1)2) 
i 

1 -Z2(m-“-1) 

?I=0 l-z2 

-2b(n)(llIi(r~“))})(z.n), (111.10) 

where $(z, n) = z”$(A, n). From Theorem (111.1) one finds 

NT+(Ao)< f (I1 -4a+(n+ l)‘I zi+2lb+(n)l zo> ‘y?::” (III.1 1) 
n=O 0 

for A0 > 1 (z. < 1). Here b+(n) > 0 and a+(n) > f. Of course the sum will 
diverge unless lim sup u(n) < 4 and lim sup b(n) < 0. Setting A0 = z. = 1 
gives the result found in Geronimo [13]. 

EXAMPLE (111.2) (Shifted Tchebychev). Suppose a’(n) = a > 0 and 
b’(n) = /I, then G,(I,, n, m) is the same as in (111.9) except that in this case 
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In this case o(J,,) = [fi - 2a, /I + 2cr] and one finds 

(111.12) 

where y+(z,, i)= 11 -a+(i+ 1)2/c?l zi+ [(b+(i)-/?)/a1 zo, and Ao~~+2a 
(z. 6 1). Note that if lim sup a(i) < c1 and lim sup b(i) < j?, there will only be 
a finite number of terms in (111.12). Furthermore the above formula applies 
even if u(i) + 0. 

EXAMPLE (111.3) (Unbounded case, Laguerre polynomials). If a’(n) = 
(n(n + a))“* and b’(n) = -(2n + 1 + a), the solutions to (11.1) and (11.2) are 

n + a 

( ) 

I’* 
p=(x, n)= n L,*( -xl, cl> -1, 

where the (p@(&n)} are orthonormal with respect to the weight 
((-x)“eX/ZJcl+l))dx, xd0, i.e., 

These polynomials have the following representation in terms of 
hypergeometric functions (&ego [22, p. 1031): 

n+o! Ii2 
p’(x, n)= n ( ) ,F,( -6 a + 1, -x). 

The functions of the second kind Qa(x, n) have the representation (Lebedev 
Cl& P. 2681) 

Qa(x,n)=,~mp~$$-$dt, n 2 0, 

=x= $(n + ct + 1, u + 1, x), larg xl <K 

(111.15) 

where $(n + CI + 1, a + 1; x) is the confluent hypergeometric function of the 
second kind. A representation for the Green’s function now follows from 
(II. 11) and in particular for u # 0 
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f(n+ 1) f(m+ 1) 
qn+cr+l)-T(m+a+l) ’ I 

O<n<m. (111.16) 

Furthermore from (11.13) we have, with a’(O)= 1, 

G,(O, - 1, m) = 
T(m+a+ 1) 

r(a+l)f(m+l) 
-l<m. (111.17) 

Thus if c( > 1, (ii) of Lemma (111.3) is satisfied and in particular for c1= 1, 

N,+,(O)< f 
ii 

b+(i)+2(i+ 1) 
i+ 1 I I 

+ l- 
i=O 

p,‘&~j~Z)~} (i+2)3’2. 

IV. THE BIRMAN-SCHWINGER BOUND 

As mentioned in the Introduction another bound on the number of 
eigenvalues of a Jacobi matrix may be obtained using the Birman- 
Schwinger argument. This bound has the advantage of being applicable 
even when the coeffkients in the Jacobi matrix are themselves finite 
matrices (see below). The Birman-Schwinger argument uses the following 
max-min theorem (Reed and Simon [ 19, Theorem XIII.1 1). 

THEOREM IV.1 (max-min principle). Let J be a self-adjoint operator 
that is bounded from above, i.e., J< cl for some c -C 00. Set 

where 

U,(cpl ? (P2 ‘. . (P/r) 

=sup <I(/, J+>, $ED(J), 11ti/[=i, (II/,cp,)=O, i=l,2...k. 

Then, for each fixed n, either 

(a) there are n eigenvalues (counting multiplicity) above the top of the 
essential spectrum and ,u,, is the n th eigenvalue, or 
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(b) u, is the top of the essential spectrum and in that case p, = u, + 1 = 
p”+ ... and there are at most n - 1 eigenvalues (counting multiplicity) 
above p,,. 

This theorem has an important consequence that we will use later. 

THEOREM (IV,2). Let J< 0 and J, be self-adjoint operators. Let J, be 
compact and 0 E o,,,(J). Then u,(J+ PJ,) is a continuous non-decreasing 
function of B for /I > 0 and strictly monotone once p,, becomes positive. 

Proof By the above hypothesis on Jr the operator J+ /3J, is self- 
adjoint on D(J) and oess(J+ PJ,) = cress(J) (Kato [ 15, p. 2441) for all /I. 
Since pL,(J + /IJ,,) > 0 for all n, we have from the max-min principle that 

where g,(fi)=max[O, ($, J+pJ,$)]. Since J<O, for fixed 1(/, g+(p) is 
either zero or a strictly increasing function of p, furthermore g&?) is a 
continuous function of /I. Because Jr is compact we find that for all 
VA I($, J&l Gm2 <h II/>, 
IPI - B21 <6/m’ then 

where m is the norm of J,. Thus if 

Igti(B,)-g&!2)l G IPI-B21 I(v4 J&)16 WI-P21 m2<4 

showing that g&I) is equicontinuous in II/ yielding the result. 
We now construct the resolvent operator R’(x) by solving the equation 

(Jo - AZ) R’(1) = Z= R”(A)(Jo - AZ), (IV.1) 

where Jo is self-adjoint. By definition R’(A) is well defined for A#a&JO) 
and for A.$ o(J’), R” is a bounded operator. For Jacobi matrices we have 
the following representation for R’(A) (Case [S], Case and Kac [6], Wall 
[23, p. 2291). 

LEMMA (IV. 1). 

RO(l, n, m) = - Q"(k n) ~‘(4 ml, n>m 

- Q"(A m) ~‘(4 n), O<ncm, 
(IV.2) 

where R’(il, n, m) is the (n + 1, m + 1) matrix element of R’(A), {Q’(l., n)] 
are the functions of the second kind (see (11,9)), and (~‘(1, n)} are the 
orthonormal polynomials associated with Jo. 

Proof Since the inverse is unique for x$a(J’) we need only 
demonstrate that (IV.2) satisfies the necessary conditions. From the left- 
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hand side of (IV.l) we find that R’(2, n, m) satisfies (11.3) for n 2 0 and 
m 2 0, where we take R’(A, - 1, m) = 0 = R’(A, n, - 1). Now (11.9) and the 
fact that w[Q, P] = -1 imply that the representation given by (IV.2) 
satisfies (11.3). That the right-hand side of (IV.l) is satisfied follows from 
the symmetry of n and m in (IV.2). Finally the fact that {Q’(A, n)} E 12, 
I # o(J) implies that K’(E.) is a bounded operator for A$ o(J). Now we 
prove 

THEOREM (IV.3). Let J: D(J) + I,, D(J) cl,, be a self-adjoint operator, 
and suppose that J = Jo + J, , where Jo is self-adjoint and J, = J- Jo is com- 
pact. Suppose furthermore that a(J’) 3 (c, b], with b E o&J”), and b < co, 
then for A, > b, 

Ni(J-,) < trCJ, R”(~o)12. 

Proof If tr[ J, R’(A,)]’ = cc there is nothing to prove, so suppose 
tr[J,RO(Ao)]* < cc. We wish to find an upper bound on the number of I, 
solutions of 

(J-AZ) II/ = 0, ti E D(J) (IV.3) 

for A 2 A, and we begin by considering the operator Jo + BJ1. Since J, is 
compact D(J” + PJ,) = D(J’) for all fl finite and we search for the I2 
solutions of 

(J”+/?J1-AZ)II/=O, IL E D(J”) (IV.4) 

for II > 1,. For p = 0 there are no I2 solutions to the above equation since I 
is above the spectrum of Jo, while for /I = 1 the above operator is equal to 
J. Consequently N:(A,) = number of A,( 1) > A,, where &(/I) is an eigen- 
value of (IV.4). From Lemma (IV.l), A,(b) is a continuous monotone 
increasing function of /I. Consequently A,( 1) > 1, if and only if A,(p) = A0 
for 0 < fi < 1. Labelling the particular value of /I for which &,(/I) = Ao, /I,,, 
we see that there is only one 8, for each 1,. Thus N,+(I,) < C, l/b:, 
O<&< 1. 

Since K”(Ao) is negative definite there exists a self-adjoint operator 
ff = ( -RO(Ao))“* (Rudin [20, p. 3491). With & one can rewrite (IV.4) with 
A= A0 as the discrete integral operator equation 

mo) = (l/B) 4% (IV.5) 

where K= Z?J,Z? and cp=k’*. Since trKK*=tr[J,J?2]2= 
tr [ J, R”( Ao)12 < cc by hypothesis, K is a Hilbert-Schmidt operator. 
Consequently from the theory of integral equations (Widom [24]) 

c I/& = tr[J,R”]*, 
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where pi is an eigenvalue of (IVS). The result now follows by observing 
that the set {/I”} is a subset of {b,}. 

Remark (IV.l). If the point b is not an eigenvalue of Jo, R’(b) is still a 
well-defined operator although now unbounded, and one can extend the 
above theorem to A02 b. 

In some cases Theorem (IV.5) gives a better bound than Theorem (111.1) 
as one approaches oess(J). This is especially true if the coefficients in the 
recurrence formula oscillate about their asymptotic values. 

If IR(Ao, m, k)l decreases as we move away from the diagonal we have 

N,+(1,)6 f (a(n+l)-a’(n+l)l (IR”(~o,n+l,n+l)~+lRo(lo,n,n))l 
i II=0 

2 

+ lb(n) - bob)1 IRO(lo, n, n)l . 

EXAMPLE (IV.1 ) (matrix orthogonal polynomials). Let 12p denote the 
Hilbert space of vectors w  = (wi, ,,,, w,), where wi E I,. The scalar product 
on 12~ is the natural one (f, g) = xi”= 1 (fi, g,), where (fi, gi) is the scalar 
product in I,. Let ep= (e,, e,+l ...ei+p-,), w  h ere ei is the usual unit vector 
in 12. Suppose J: D(J) -+ I$‘, D(J) c l$‘, is a self-adjoint operator with the 
representation 

Je,q,=A(n+l)ep,+,,,+B(n)e,~+A(n)ef,-,,, (IV.6) 

and 
Je,P = A( 1) ep” + B(0) e,p, (IV.7) 

where A(n + 1) and B(n) are assumed to be p x p real symmetric matrices 
and A(n+ l)>O. We assume that J=J”+Jl, where J,=J-Jo is a com- 
pact operator and Jo is a self-adjoint operator satisfying (IV.6) and (IV.7) 
with A(n + 1) and B(n) replaced by A”(n+ 1) and B’(n), respectively. 
Constructing the matrix polynomial solutions satisfying the equations 

AO(n + 1) pO(A, n + 1) + BO(n) PO@, n) + AO(n) pO(A, n - 1) 

= iPO(A n), n = 0, 1, 2, . . . 

with the initial conditions 

PO(A 0) = Z, pO(lz, - 1) = 0, 

one finds that 

i p”(;l, n) duo p”(A, m)+ = Z6,,, 
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where A+ is the hermitian conjugate of A, u” is the spectral measure 
associated with Jo, and Z is the p x p identity matrix. Writing Q”(n, n), the 
matrix function of the second kind, as 

one has that the matrix analog to (IV.2) is 

RO(;l, n, m) = 
- Q”(A n) ~‘(5 ml+, n2m 

-potA n) Q”(k ml+, OGncm, 

Assuming o(J’) c (c, a], a < co, with a~rr,,,(.Z’), Theorem (IV.3) yields for 
I, > a that 

N,f(l,) d tr(J, R”(10))2 < C 44 m) a(m, n), 
ll,t77=0 

where 

u(n, m) = IA(n + l)- A”(n + 1)1 IR”(lo, n + 1, m)[ 

+ P(n) - B”(n)1 IR”(~o, 4 m)l 

+ IA(n) - A”(n)1 IR’(l,, n - 1, m)l. 

Here IAl = {C,,, afj} ‘1’ In the special case where A’(n) = Z/2 and B’(n) = 0 . 
one finds 

-2y+l z 
i 

m+l-Z-m-l 

z-l/z I 1, nam 

RO(I,, n, m) = 
-zzm+’ z 

i 

n+l-z--n-l 

zo- l/z I 1, n<m 

with z = lo - ,/m. Using the fact that for 1, > 1 R(3Lo, n, m) decreases 
as we move away from the diagonal yields 

1 -z2(i+l) 

f IA(i+ l)-+ZI + IB(i)l 1 -z2 
2 
. 

i=O 
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