JOURNAL OF APPROXIMATION THEORY 53, 251-265 (1988)

On the Spectra of Infinite-Dimensional Jacobi Matrices

J. S. GERONIMO

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A.

Communicated by Paul G. Nevai

Received August 6, 1984; revised June 2, 1986

The Green's function method used by Case and Kac is extended to include unbounded Jacobi matrices. As a first application an upper bound on the number of eigenvalues is calculated, using the method of Bargmann. Another bound is found using the Birman-Schwinger argument, which is valid for matrix orthogonal polynomials. \circled{c} 1988 Academic Press, Inc.

I. INTRODUCTION

Let l_2 \supset $D(J)$ $\stackrel{J}{\rightarrow}$ l_2 be a self-adjoint operator with the representation

$$
Je_n = a(n + 1) e_{n+1} + b(n) e_n + a(n) e_{n-1}, \qquad n = 1, 2, ... \qquad (I.1)
$$

$$
Je_0 = a(1) e_1 + b(0) e_0.
$$
 (I.2)

The spectrum of J, $\sigma(J)$, is the set of all x such that $(J - xI)^{-1}$ is not a bounded linear operator on l_2 , and $\sigma_p(J) \subset \sigma(J)$ is the set of all x such that $(J - xI)^{-1}$ is not defined. $\sigma_{ess}(J)$ (Reed and Simon [18]), the essential spectrum of J, is the set of all real λ for which $P_{(\lambda-\varepsilon,\lambda+\varepsilon)}(J)$ is infinitedimensional for all $\epsilon > 0$. Here $P_r = \chi_{\Omega}(J)$ is a spectral projection of J onto Ω , Ω a Borel subset of R. Let $p(\lambda, n)$ be the orthonormal polynomials associated with J and for each n let $\lambda_{n1} < \lambda_{n2} < \lambda_{n3} < \cdots < \lambda_{nn}$ be the zeros of $p(\lambda, n)$. Setting $\rho(J) = \lim_{i \to \infty} \lim_{n \to \infty} \lambda_{n,i}$ and $\tau(J) =$ $\lim_{j\to\infty}$ $\lim_{n\to\infty}$ $\lambda_{n,n-j+1}$, one finds that $\sigma_{ess}(J) \subset [\rho, \tau]$ with ρ and τ being, respectively, the largest and smallest points in $\sigma_{\text{ess}}(J)$ [4].

A question that has been of recent interest (Geronimo and Case [14], Chihara $[7-9]$, Chihara and Nevai $[10]$, and Geronimo $[13]$) is can one obtain bounds on the number of eigenvalues of J in $[\sigma, \tau]$ ^c? In [13] an upper bound on the number of eigenvalues of J is given when J is a bounded operator, using an argument first developed by Bargmann [2]. Here we extend the argument to unbounded operators and use a different argument due to Birman [3] and Schwinger [21] to obtain other bounds.

We proceed as follows: in Section II we construct a general comparison equation using the Green's function, which allows us (Section III) to obtain an upper bound on the number of eigenvalues of J using Bargmann's argument. In Section IV a modification of the Birman-Schwinger argument due to Fonda and Ghirardi [11] is used which gives an alternative upper bound on the number of eigenvalues of J. This bound is valid even if the entries in J are themselves matrices.

II. CONSTRUCTION OF THE COMPARISON EQUATION

Given $a^0(n+1)$, $b^0(n) \in C$, $a^0(n+1) \neq 0$ for all $n \geq 0$ we construct the unique solution to the equation

$$
a^{0}(n+1) p^{0}(\lambda, n+1) + b^{o}(n) p^{0}(\lambda, n) + a^{0}(n) p^{0}(\lambda, n-1)
$$

= $\lambda p^{0}(\lambda, n), \quad n = 0, 1, 2, ...,$ (II.1)

satisfying the initial conditions

$$
p^{0}(\lambda, 0) = 1, \qquad p^{0}(\lambda, -1) = 0. \tag{II.2}
$$

With these polynomials we now construct the unique (Green's function) solution to the equation

$$
a^{0}(n+1) G_{1}(\lambda, n+1, m) + b^{0}(n) G_{1}(\lambda, n, m) + a^{0}(n) G_{1}(\lambda, n-1, m)
$$

- $\lambda G_{1}(\lambda, n, m) = \delta_{n,m}, \qquad m \ge -1, n \ge 0,$ (II.3)

with boundary conditions

$$
G_1(\lambda, n, m) = 0, \qquad n \ge m. \tag{II.4}
$$

The solution is $(A$ tkinson $[1]$)

$$
G_1(\lambda, n, m) = \begin{cases} 0, & n \ge m \\ \frac{p_1^0(\lambda, m) p^0(\lambda, n) - p_1^0(\lambda, n) p^0(\lambda, m)}{W[p_1^0, p^0]}, & -1 \le n < m, \end{cases}
$$
(II.5)

where $p⁰(\lambda, m)$ is another solution of (II.1) which is linearly independent of $p^0(\lambda, m)$ and W[p⁰, p⁰] is the Wronskian of p⁰ and p⁰, i.e.,

$$
W[p_1^0, p^0] = a^0(n+1) [p_1^0(\lambda, n+1) p^0(\lambda, n) - p^0(\lambda, n) p^0(\lambda, n+1)], \quad (II.6)
$$

which is independent of n (Case [5]).

There are two representations of $G_1(\lambda, n, m)$ which we will need later and in order to exhibit these representations we introduce other solutions of (II.1). To this end, let $p^{(k)}(\lambda, n)$, $k \ge 0$, be the solution of

$$
a^{0}(n+k+1) p^{(k)}(\lambda, n+1) + b^{0}(n+k) p^{(k)}(\lambda, n) + a^{0}(n+k) p^{(k)}(\lambda, n-1)
$$

= $\lambda p^{(k)}(\lambda, n), \qquad n = 0, 1, 2, ...,$ (II.7)

satisfying the initial conditions

$$
p^{(k)}(\lambda, 0) = 1, \qquad p^{(k)}(\lambda, -1) = 0. \tag{II.8}
$$

In the special case where the polynomials $\{p^{0}(\lambda, n)\}\$ are orthogonal with respect to a unique measure u^0 supported on R we define the functions of the second kind $Q^{0}(\lambda, n)$ as

$$
Q^{0}(\lambda, n) = \int_{s} \frac{p^{0}(\lambda, n)}{\lambda - x} du^{0}(x), \qquad n = 0, 1, 2, ..., \lambda \notin s,
$$
 (II.9)

where s is the support of u^0 . An important property of $Q^0(\lambda, n)$ is that $\{Q^0(\lambda, n)\}\in l_2$ for $\lambda \notin O(\lambda)$.

LEMMA (II.1). $G_1(\lambda, n, m)$ has the representation

$$
a^{0}(n+1) G_{1}(\lambda, n, m) =\begin{cases} 0, & n \ge m \\ p^{(n+1)}(\lambda, m-n-1), & -1 \le n < m. \end{cases}
$$
 (II.10)

Furthermore if the moment problem is determined $G_1(\lambda, n, m)$ can also be represented by

$$
G_1(\lambda, n, m) =\begin{cases} 0, & n \geq m \\ Q^0(\lambda, n) \ p^0(\lambda, m) - Q^0(\lambda, m) \ p^0(\lambda, n), & 0 \leq n < m. \end{cases}
$$
 (II.11)

Proof. From (II.3), (II.4), and (II.8) one has that

$$
a^{0}(n+1) G_{1}(\lambda, n, n+1) = 1 = p^{(n+1)}(\lambda, 0).
$$
 (II.12)

Setting $m = n + l$ in (II.3) and then substituting (II.10) into (II.3), we find that the lemma will be demonstrated if it is shown that

$$
p^{(n)}(\lambda, l) = \left(\frac{\lambda - b(n+1)}{a(n+1)}\right) p^{(n+1)}(\lambda, l-1) - \frac{a(n+1)}{a(n+2)} p^{(n+2)}(\lambda, l-2),
$$

 $l = 1, 2,$ (II.13)

But from (II.7) we see that $p^{(n)}(\lambda, l)$, $p^{(n+1)}(\lambda, l-1)$, and $p^{(n+2)}(\lambda, l-2)$ satisfy a three-term recurrence formula having the same coefficients. Therefore they are not linearly independent and we can write $p^{(n)}(\lambda, l) =$

 $Ap^{(n+1)}(\lambda, l-1) + Bp^{(n+2)}(\lambda, l-2)$, where A and B are independent of l. A and B can now be obtained by setting $l = 1$ and $l = 2$ in the above equation and solving the resulting linear system. To prove the second part we note that given (II.9) we find from (II.7) that $a^0(0)$ $Q^0(\lambda, -1) = 1$, and consequently that $W[Q^0, p^0] = -1$. This implies that $Q^0(\lambda, n)$ is linearly independent of $p^{0}(\lambda, n)$ and (II.11) follows from (II.5).

Given another system of polynomials $\{p(\lambda, n)\}\)$, satisfying the equation

$$
a(n+1) p(\lambda, n+1) + b(n) p(\lambda, n) + a(n) p(\lambda, n-1) = \lambda p(\lambda, n),
$$

n = 0, 1, 2, ... (II.14)

with initial conditions

$$
p(\lambda, 0) = 1, \qquad p(\lambda, -1) = 0 \tag{II.15}
$$

and with $a(n + 1)$, $b(n) \in C$, $a(n + 1) \neq 0$ for all $n \geq 0$, we seek to express the above polynomials in terms of the (0) system. To this end, multiplying (II.14) by $\alpha_n = \prod_{i=1}^n (a(i)/a^0(i))$, $\alpha(0) = 1$, and setting

$$
\hat{p}(\lambda, n) = \alpha_n \, p(\lambda, n), \tag{II.16}
$$

we find

$$
a^{0}(n+1) \hat{p}(\lambda, n+1) + b(n) \hat{p}(\lambda, n) + \frac{a(n)^{2}}{a^{0}(n)} \hat{p}(\lambda, n-1) = \lambda \hat{p}(\lambda, n),
$$

n = 0, 1, 2, ..., (II.17)

where $a^0(0) \equiv 1$. Multiplying (II.7) by $\hat{p}(\lambda, n)$ and (II.17) by $G_1(\lambda, n, m)$, subtracting one from the other, and then summing on n from $n = i$ to $n = \infty$ gives the equation

$$
\hat{p}(\lambda, m) = a^0(j) G_1(\lambda, j-1, m) \hat{p}(\lambda, j) - \frac{a(j)^2}{a^0(j)} G_1(\lambda, j, m) \hat{p}(\lambda, j-1) + \sum_{n=j}^{m-1} K(n, m, \lambda) \hat{p}(\lambda, n), \qquad m = j, j+1, ..., \qquad (II.18)
$$

where

$$
K(n, m, \lambda) = (b^{0}(n) - b(n)) G_{1}(\lambda, n, m)
$$

+ $a^{0}(n+1) \left(1 - \frac{a(n+1)^{2}}{a^{0}(n+1)^{2}}\right) G_{1}(\lambda, n+1, m).$ (II.19)

Thus we have shown

THEOREM (II.1). Given an arbitrary set of polynomials satisfying (II.14) and (II.15) with $a(n+1)$, $b(n) \in C$, $a(n+1) \neq 0$, $n \geq 0$, the scaled polynomials given by (II.17) satisfy (II.18), where $G_1(\lambda, n, m)$ is the solution of (II.3) and (II.4), with $a^0(n+1)$, $b^0(n) \in C$, $a^0(n+1) \neq 0$, $n \ge 0$, and $a^{0}(0) \equiv 1.$

III. AN UPPER BOUND ON THE NUMBER OF EIGENVALUES OF J

Let $J: D(J) \rightarrow l_2$, where $D(J)$ is the domain of J, be a self-adjoint operator with the representation

$$
Je_n = a(n+1) e_{n+1} + b(n) e_n + a(n) e_{n-1}, \qquad n = 1, 2, ...
$$

\n
$$
Je_0 = a(1) e_1 + b(0) e_0.
$$
 (III.1)

Here $\{e_n\}$ is the natural basis in l_2 , and $a(i) > 0$, $i > 0$. The problem we are interested in is can we find an upper bound on the number of eigenvalues of J (the number of solutions of $J\psi = \lambda \psi$, $\psi \in D(J)$) that lie above the essential spectrum $\sigma_{\rm ess}$?

DEFINITION. Let J and J^0 be Jacobi matrices and let J^+ be the Jacobi matrix whose off diagonal elements $a^+(i)$ are

$$
a^{+}(i) = \begin{cases} a(i), & a(i) > a^{0}(i), \\ a^{0}(i), & a(i) \le a^{0}(i), \end{cases} i = 1, 2, ... \qquad (III.2)
$$

and whose diagonal elements $b^+(i)$ satisfy

$$
b^{+}(i) = \begin{cases} b(i), & b(i) > b^{0}(i), \\ b^{0}(i), & b(i) \leq b^{0}(i), \end{cases} i = 0, 1, 2, \quad (III.3)
$$

LEMMA (III.1). Let $\tau(J) \leq \tau(J^+) < \infty$ and $\lambda_0 \geq \tau(J^+)$. Let $N_{J^+}^+(\lambda_0)(N_J^+(\lambda_0))$ be the number of eigenvalues of $J^+(J)$ greater than λ_0 , then $N^+(\lambda_0) \le N^+(\lambda_0)$.

Proof. Since $N_f^+(\lambda_0)$ is equal to the number of changes in sign $p(\lambda_0, n)$, $n = 0, 1, 2, \dots$, and since $b^+(i) \geq b(i)$ and $a^+(i) \geq a(i)$, the result is a consequence of Sturm's comparison theorem (Fort [12, p. 152, Theorem 1]).

Let $\{\hat{p}^+(\lambda, n)\}\$ be the scaled polynomials associated with J^+ (satisfying $(II.14)$ and $(II.15)$ but rescaled according to $(II.16)$). We now prove

LEMMA (III.2). Suppose $a^0(0) = 1$,

- (i) $G_1(\lambda_0, i, k) > 0, k > i \ge -1$.
- (ii) $G_1(\lambda_0, i, k) \le G_1(\lambda_0, l, k) \le G_1(\lambda_0, -1, k), l \le i$,

(iii) sign
$$
\hat{p}^+(\lambda_0, j) = \text{constant}, m < j < n < \infty
$$
,

(iv) $\hat{p}^+(\lambda_0,n)=0$ or sign $\hat{p}^+(\lambda_0, j)=$ sign $\hat{p}^+(\lambda_0, n)=-$ sign $\hat{p}^+(\lambda_0, n)$ $n+1$, $m < j < n$, and

(v) $\hat{p}^{\dagger}(\lambda_0, m) = 0$ or $-\text{sign } \hat{p}^{\dagger}(\lambda_0, m - 1) = \text{sign } \hat{p}^{\dagger}(\lambda_0, m) =$ sign $\hat{p}^{\dagger}(\lambda_0, j)$, $m < j < n$. Then

$$
1 \leqslant \sum_{i=m}^{n-1} \left\{ \left| \frac{b^+(i)-b^0(i)}{a^0(i+1)} \right| + \left| 1 - \frac{a^+(i+1)^2}{a^0(i+1)^2} \right| \right\} a^0(i+1) G_1(\lambda_0, -1, i). \tag{III.4}
$$

Proof. The proof breaks up into two cases: Case 1, $\hat{p}^{\dagger}(\lambda_0, m) = 0$, and Case 2, sign $\hat{p}^+(\lambda_0, m) = -\text{sign } \hat{p}^+(\lambda_0, m - 1)$.

Case 1. Using (111.2) and (111.3) in (11.18) yields

$$
\frac{\hat{p}^+(\lambda_0, k)}{\hat{p}^+(\lambda_0, m+1)} = a^0(m+1) G_1(\lambda_0, m, k)
$$

$$
- \sum_{i=m+1}^{k-1} \left\{ \left| \frac{b^+(i) - b^0(i)}{a^0(i+1)} \right| G_1(\lambda_0, i, k) + \left| 1 - \frac{a^+(i+1)^2}{a^0(i+1)^2} \right| G_1(\lambda_0, i+1, k) \right\}
$$

$$
\times a^0(i+1) \frac{\hat{p}^+(\lambda_0, i)}{\hat{p}^+(\lambda_0, m+1)}.
$$
 (III.5)

Since $\hat{p}^+(\lambda_0, k)/\hat{p}^+(\lambda_0, m + 1) \ge 0$, $m + 1 \le k < n$, (III.5) implies that $\hat{p}^+(\lambda_0,k)/\hat{p}^+(\lambda_0,m+1) \leq a^0(m+1) G_1(\lambda_0,m, k), m+1 \leq k < n$. Now substituting these results into (III,5) then using the fact that $\hat{p}^{\dagger}(\lambda_0, n)/\hat{p}^{\dagger}(\lambda_0, m + 1) \leq 0$ ((iii) and (iv)) yields

$$
G_1(\lambda_0, m, n) \leq \sum_{i=m+1}^{n-1} \left\{ \left| \frac{b^+(i)-b^0(i)}{a^0(i+1)} \right| G_1(\lambda_0, i, n) + \left| 1 - \frac{a^+(i+1)^2}{a^0(i+1)^2} \right| G_1(\lambda_0, i+1, n) \right\} a^0(i+1) G_1(\lambda_0, m, i).
$$
\n(III.6)

It follows from (ii) above that we can replace $G_1(\lambda_0, i, n)$ and $G_1(\lambda_0, i+1, n)$ by $G_1(\lambda_0, m, n)$, which can then be eliminated from (III.6). Now replacing $G_1(\lambda_0, m, i)$ by $G_1(\lambda_0, -1, i)$ using (ii) gives the result.

Case 2. In this case we begin with

$$
\frac{\hat{p}^+(\lambda_0, k)}{\hat{p}^+(\lambda_0, m)} = a^0(m) G_1(\lambda_0, m-1, k) - \frac{a^+(m)^2}{a^0(m)} \frac{\hat{p}^+(\lambda_0, m-1)}{\hat{p}^+(\lambda_0, m)} G_1(\lambda_0, m, k) \n- \sum_{i=m}^{k-1} \left\{ \left| \frac{b^+(i) - b^0(i)}{a^0(i+1)} \right| G_1(\lambda_0, i, k) + \left| 1 - \frac{a^+(i+1)^2}{a^0(i+1)^2} \right| G_1(\lambda_0, i+1, k) \right\} a^0(i+1) \frac{\hat{p}^+(\lambda_0, i)}{\hat{p}^+(\lambda_0, m)}.
$$
\n(III.7)

Since $\hat{p}^{\dagger}(\lambda_0, m-1)/\hat{p}^{\dagger}(\lambda_0, m)$ < 0 we have from above that

$$
\frac{\hat{p}^+(\lambda_0, k)}{\hat{p}^+(\lambda_0, m)} \leqslant \left(a^0(m) - \frac{a^+(m)^2}{a^0(m)} \frac{\hat{p}^+(\lambda_0, m-1)}{\hat{p}^+(\lambda_0, m)}\right) G_1(\lambda_0, m-1, k),
$$

where (ii) has been used. Again using the fact that $\hat{p}^+(\lambda_0, n)/\hat{p}^+(\lambda_0, m) \leq 0$ and (ii) above in (111.7) yields

$$
G_1(\lambda_0, m, n) \leq \sum_{i=m}^{n-1} \left\{ \left| \frac{b^+(i) - b^0(i)}{a^0(i+1)} \right| G_1(\lambda_0, i, n) + \left| 1 - \frac{a^+(i+1)^2}{a^0(i+1)^2} \right| G_1(\lambda_0, i+1, n) \right\} a^0(i+1) G_1(\lambda_0, m-1, i).
$$
\n(III.8)

The result now follows by using (ii) once again.

THEOREM (III.1). Given *J* choose J^0 such that $\tau(J) \leq \tau(J^0) = \tau(J^+)$, where J^+ is given by (III.2) and (III.3). Suppose that for $\lambda_0 \ge \tau(J^0)$, $0 < G_1(\lambda_0, n, m) \le G_1(\lambda_0, n, m) \le G_1(\lambda_0, -1, m), -1 \le k \le n < m,$ with $a^0(0) = 1$. Then

$$
N_f^+(\lambda_0) \le N_f^+(\lambda_0)
$$

$$
\le \sum_{i=0}^{\infty} \left\{ \left| \frac{b^+(i) - b^0(i)}{a^0(i+1)} \right| + \left| 1 - \frac{a^+(i+1)^2}{a^0(i+1)^2} \right| \right\} a^0(i+1) G_1(\lambda_0, -1, i).
$$

Proof. The theorem follows from Lemma (III.1) and Lemma (III.2).

COROLLARY (III.1). Given J choose J^0 such that $\rho(J) \ge \rho(J^0) = \rho(J^-)$, where the coefficients of J^- are chosen as $a^-(i) = a^+(i)$ and

$$
b^{-}(i) = \begin{cases} b^{0}(i), & b(i) \geq b^{0}(i) \\ b(i), & b(i) < b^{0}(i). \end{cases}
$$

Furthermore suppose that for $\lambda_0 \le \rho(J^0), 0 < |G_1(\lambda_0, n, m)| \le |G_1(\lambda_0, k, m)|$ $\leq |G_1(\lambda_0, -1, m)|$, $-1 \leq k \leq n < m$, with $a^0(0) = 1$. Let $N_f^-(\lambda_0)$ denote the number of eigenvalues of J less than λ_0 , then

$$
N_J^-(\lambda_0) \le N_{J^-}^-(\lambda_0)
$$

\n
$$
\le \sum_{i=0}^{\infty} \left\{ \left| \frac{b^-(i) - b^0(i)}{a^0(i+1)} \right| + \left| 1 - \frac{a^-(i+1)^2}{a^0(i+1)^2} \right| \right\} a^0(i+1) |G_1(\lambda_0, -1, i)|.
$$

Proof. Setting $p_-(\lambda, n) = (-1)^n p(-\lambda, n)$ and $p^0(\lambda, n) = (-1)^n$ $p^{0}(-\lambda, n)$ in (II.14) and (II.1), respectively, then using Theorem (III.1) gives the result.

EXAMPLE (III.1) (Tchebychev). Setting $a^0(n) = \frac{1}{2}$ and $b^0(n) = 0$, one finds

r Gl(An,m)= 2(0, Z m-n-Z-(m-n) ¹ z-l/z ' narn (111.9) -l,<n<m

with $z = \lambda - \sqrt{\lambda^2 - 1}$. Equation (II.19) becomes with $j = 0$

$$
\psi(z,m) = \frac{1 - z^{2(m+1)}}{1 - z^2} + \sum_{n=0}^{m-1} \left\{ (1 - 4a(n+1)^2) \left(\frac{1 - z^{2(m-n-1)}}{1 - z^2} \right) - 2b(n) \left(\frac{1 - z^{2(m-n)}}{1 - z^2} \right) \right\} \psi(z,n), \tag{III.10}
$$

where $\hat{\psi}(z, n) = z^n \hat{p}(\lambda, n)$. From Theorem (III.1) one finds

$$
N_{J^+}^+(\lambda_0) \leqslant \sum_{n=0}^{\infty} \left\{ |1 - 4a^+(n+1)^2| \ z_0^2 + 2|b^+(n)| \ z_0 \right\} \frac{1 - z_0^{2(n+1)}}{1 - z_0^2} \tag{III.11}
$$

for $\lambda_0 \ge 1$ ($z_0 \le 1$). Here $b^+(n) \ge 0$ and $a^+(n) \ge \frac{1}{2}$. Of course the sum will diverge unless lim sup $a(n) \le \frac{1}{2}$ and lim sup $b(n) \le 0$. Setting $\lambda_0 = z_0 = 1$ gives the result found in Geronimo [13].

EXAMPLE (III.2) (Shifted Tchebychev). Suppose $a^0(n) = \alpha > 0$ and $b^{0}(n) = \beta$, then $G_1(\lambda_0, n, m)$ is the same as in (III.9) except that in this case

$$
z=\frac{\lambda-\beta}{2\alpha}-\sqrt{\left(\frac{\lambda-\beta}{2\alpha}\right)^2-1}.
$$

In this case $\sigma(J_0) = [\beta - 2\alpha, \beta + 2\alpha]$ and one finds

$$
N_{J^+}^+(\lambda_0) \leq \sum_{i=0}^{\infty} \gamma_+(z_0, i) \left(\frac{1 - z_0^{2(i+1)}}{1 - z_0^2} \right), \tag{III.12}
$$

where $\gamma_+(z_0, i) = |1 - a^+(i+1)^2/\alpha^2| z_0^2 + |(b^+(i) - \beta)/\alpha| z_0$, and $\lambda_0 \ge \beta + 2\alpha$ $(z_0 \leq 1)$. Note that if lim sup $a(i) < \alpha$ and lim sup $b(i) < \beta$, there will only be a finite number of terms in (111.12). Furthermore the above formula applies even if $a(i) \rightarrow 0$.

EXAMPLE (III.3) (Unbounded case, Laguerre polynomials). If $a^0(n) =$ $(n(n + \alpha))^{1/2}$ and $b^0(n) = -(2n + 1 + \alpha)$, the solutions to (II.1) and (II.2) are

$$
p^{\alpha}(x, n) = {n+\alpha \choose n}^{1/2} L_n^{\alpha}(-x), \qquad \alpha > -1,
$$
 (III.13)

where the $\{p^{\alpha}(\lambda,n)\}\$ are orthonormal with respect to the weight $((-x)^{\alpha}e^{x}/\Gamma(\alpha+1)) dx$, $x \le 0$, i.e.,

$$
\int_{-\infty}^{0} p^{\alpha}(x, n) p(x, m) \frac{e^{x}(-x)^{\alpha}}{\Gamma(\alpha+1)} dx = \delta_{n,m}.
$$

These polynomials have the following representation in terms of hypergeometric functions (Szegö $[22, p, 103]$):

$$
p^{\alpha}(x, n) = {n + \alpha \choose n}^{1/2} {}_1F_1(-n, \alpha + 1, -x). \hspace{1cm} (III.14)
$$

The functions of the second kind $Q^{\alpha}(x, n)$ have the representation (Lebedev $[16, p. 268]$

$$
Q^{\alpha}(x, n) = \int_{-\infty}^{0} \frac{p^{\alpha}(t, n)}{x - t} \frac{e^{t}(-t)^{\alpha}}{\Gamma(\alpha + 1)} dt, \qquad n \ge 0,
$$

$$
= x^{\alpha} \frac{\Gamma(n + \alpha + 1)}{\Gamma(\alpha + 1)} {n + \alpha \choose n}^{1/2} \psi(n + \alpha + 1, \alpha + 1, x), \qquad |\arg x| < \Pi,
$$

(III.15)

where $\psi(n + \alpha + 1, \alpha + 1; x)$ is the confluent hypergeometric function of the second kind. A representation for the Green's function now follows from (II.11) and in particular for $\alpha \neq 0$

$$
G(0, n, m) = \begin{cases} 0, & n > m \\ \frac{1}{\alpha} \sqrt{\frac{\Gamma(n + \alpha + 1)}{\Gamma(n + 1)} \frac{\Gamma(m + \alpha + 1)}{\Gamma(m + 1)}} \\ \times \left[\frac{\Gamma(n + 1)}{\Gamma(n + \alpha + 1)} - \frac{\Gamma(m + 1)}{\Gamma(m + \alpha + 1)} \right], & 0 \le n < m. \end{cases} \tag{III.16}
$$

Furthermore from (II.13) we have, with $a^0(0) \equiv 1$,

$$
G_1(0,-1,m) = \left(\frac{\Gamma(m+\alpha+1)}{\Gamma(\alpha+1)\Gamma(m+1)}\right)^{1/2}, \qquad -1 < m. \tag{III.17}
$$

Thus if $\alpha \ge 1$, (ii) of Lemma (III.3) is satisfied and in particular for $\alpha = 1$,

$$
N_{J^+}^+(0) \leqslant \sum_{i=0}^{\infty} \left\{ \left| \frac{b^+(i)+2(i+1)}{i+1} \right| + \left| 1 - \frac{a^+(i+1)^2}{i+2(i+1)} \right| \right\} (i+2)^{3/2}.
$$

IV. THE BIRMAN-SCHWINGER BOUND

As mentioned in the Introduction another bound on the number of eigenvalues of a Jacobi matrix may be obtained using the Birman-Schwinger argument. This bound has the advantage of being applicable even when the coefficients in the Jacobi matrix are themselves finite matrices (see below). The Birman-Schwinger argument uses the following max-min theorem (Reed and Simon [19, Theorem XIII.1]).

THEOREM IV.1 (max-min principle). Let J be a self-adjoint operator that is bounded from above, i.e., $J \leq cI$ for some $c < \infty$. Set

$$
\mu_n = \inf_{\varphi_1, \varphi_2 \cdots \varphi_{n-1}} U_J(\varphi_1, \varphi_2 \cdots \varphi_{n-1}), \qquad \varphi_i \in D(J),
$$

where

$$
U_J(\varphi_1, \varphi_2 \cdots \varphi_k)
$$

= $\sup \langle \psi, J\psi \rangle$, $\psi \in D(J)$, $\|\psi\| = 1$, $\langle \psi, \varphi_i \rangle = 0$, $i = 1, 2 \cdots k$.

Then, for each fixed n, either

(a) there are n eigenvalues (counting multiplicity) above the top of the essential spectrum and μ_n is the nth eigenvalue, or

(b) μ_n is the top of the essential spectrum and in that case $\mu_n = \mu_{n+1} =$ $\mu_n + \cdots$ and there are at most $n-1$ eigenvalues (counting multiplicity) above μ_n .

This theorem has an important consequence that we will use later.

THEOREM (IV,2). Let $J \le 0$ and J_p be self-adjoint operators. Let J_p be compact and $0 \in \sigma_{\text{ess}}(J)$. Then $\mu_n(J + \beta J_p)$ is a continuous non-decreasing function of β for $\beta \ge 0$ and strictly monotone once μ_n becomes positive.

Proof. By the above hypothesis on J_p the operator $J + \beta J_p$ is selfadjoint on $D(J)$ and $\sigma_{\rm ess}(J+\beta J_p) = \sigma_{\rm ess}(J)$ (Kato [15, p. 244]) for all β . Since $\mu_n(J + \beta J_n) \ge 0$ for all n, we have from the max-min principle that

$$
\mu_n(J + \beta J_p) = \min_{\varphi_1, \varphi_2 \cdots \varphi_{n-1}} \max[g_{\psi}(\beta)], \psi \in D(J), \psi_i \in D(J), \|\psi\| = 1, \langle \psi, \varphi_i \rangle = 0, i = 1, 2 \cdots n-1,
$$

where $g_{\psi}(\beta) = \max[0, \langle \psi, J+\beta J_{p}\psi \rangle]$. Since $J \le 0$, for fixed $\psi, g_{\psi}(\beta)$ is either zero or a strictly increasing function of β , furthermore $g_{\psi}(\beta)$ is a continuous function of β . Because J_p is compact we find that for all $|\psi, \left| \left\langle \psi, J_{p} \psi \right\rangle \right| \leqslant m^{2} \left\langle \psi, \psi \right\rangle,$ $|\beta_1 - \beta_2| \leq \delta/m^2$ then where m is the norm of J_{n} . Thus if

$$
|g_{\psi}(\beta_1)-g_{\psi}(\beta_2)| \leq |\beta_1-\beta_2| |\langle \psi, J_p \psi \rangle| \leq |\beta_1-\beta_2| m^2 < \delta,
$$

showing that $g_{\psi}(\beta)$ is equicontinuous in ψ yielding the result.

We now construct the resolvent operator $R⁰(x)$ by solving the equation

$$
(J0 - \lambda I) R0(\lambda) = I = R0(\lambda)(J0 - \lambda I),
$$
 (IV.1)

where J^0 is self-adjoint. By definition $R^0(\lambda)$ is well defined for $\lambda \notin \sigma_{dis}(J^0)$ and for $\lambda \notin \sigma(J^0)$, R^0 is a bounded operator. For Jacobi matrices we have the following representation for $R^0(\lambda)$ (Case [5], Case and Kac [6], Wall [23, p. 229]).

LEMMA $(IV.1)$.

$$
R^{0}(\lambda, n, m) =\begin{cases}\n-Q^{0}(\lambda, n) \ p^{0}(\lambda, m), & n > m \\
-Q^{0}(\lambda, m) \ p^{0}(\lambda, n), & 0 \leq n < m,\n\end{cases}
$$
\n(IV.2)

where $R^{0}(\lambda, n, m)$ is the $(n + 1, m + 1)$ matrix element of $R^{0}(\lambda), \{Q^{0}(\lambda, n)\}\$ are the functions of the second kind (see (II.9)), and $\{p^0(\lambda, n)\}\$ are the orthonormal polynomials associated with $J⁰$.

Proof. Since the inverse is unique for $x \notin \sigma(J^0)$ we need only demonstrate that (IV.2) satisfies the necessary conditions. From the left-

hand side of (IV.1) we find that $R^0(\lambda, n, m)$ satisfies (II.3) for $n \ge 0$ and $m \ge 0$, where we take $R^0(\lambda, -1, m) = 0 = R^0(\lambda, n, -1)$. Now (II.9) and the fact that $W[Q, P] = -1$ imply that the representation given by (IV.2) satisfies $(II.3)$. That the right-hand side of $(IV.1)$ is satisfied follows from the symmetry of *n* and *m* in (IV.2). Finally the fact that $\{Q^0(\lambda, n)\}\in l_2$, $\lambda \notin \sigma(J)$ implies that $R^0(\lambda)$ is a bounded operator for $\lambda \notin \sigma(J)$. Now we prove

THEOREM (IV.3). Let $J: D(J) \rightarrow l_2$, $D(J) \subset l_2$, be a self-adjoint operator, and suppose that $J = J^0 + J_1$, where J^0 is self-adjoint and $J_1 = J - J^0$ is compact. Suppose furthermore that $\sigma(J^0) \supset (c, b]$, with $b \in \sigma_{\text{ess}}(J^0)$, and $b < \infty$, then for $\lambda_0 > b$,

$$
N_J^+(\lambda_0) \leqslant \text{tr}[J_1 R^0(\lambda_0)]^2.
$$

Proof. If $tr[J_1 R^0(\lambda_0)]^2 = \infty$ there is nothing to prove, so suppose $tr[J_1R^0(\lambda_0)]^2 < \infty$. We wish to find an upper bound on the number of l_2 solutions of

$$
(J - \lambda I)\psi = 0, \qquad \psi \in D(J) \tag{IV.3}
$$

for $\lambda \ge \lambda_0$ and we begin by considering the operator $J^0 + \beta J_1$. Since J_1 is compact $D(J^0 + \beta J_1) = D(J^0)$ for all β finite and we search for the I_2 solutions of

$$
(J0 + \beta J1 - \lambda I) \psi = 0, \qquad \psi \in D(J0)
$$
 (IV.4)

for $\lambda > \lambda_0$. For $\beta = 0$ there are no l_2 solutions to the above equation since λ is above the spectrum of J^0 , while for $\beta = 1$ the above operator is equal to J. Consequently $N_f^+(\lambda_0)$ = number of $\lambda_n(1) > \lambda_0$, where $\lambda_n(\beta)$ is an eigenvalue of (IV.4). From Lemma (IV.1), $\lambda_n(\beta)$ is a continuous monotone increasing function of β . Consequently $\lambda_n(1) > \lambda_0$ if and only if $\lambda_n(\beta) = \lambda_0$ for $0 < \beta < 1$. Labelling the particular value of β for which $\lambda_n(\beta) = \lambda_0$, β_n , we see that there is only one β_n for each λ_n . Thus $N_f^+(\lambda_0) \leq \sum_n 1/\beta_n^2$, $0 < \beta_n < 1$.

Since $R^{0}(\lambda_0)$ is negative definite there exists a self-adjoint operator $\hat{R} = (-R^{0}(\lambda_0))^{1/2}$ (Rudin [20, p. 349]). With \hat{R} one can rewrite (IV.4) with $\lambda = \lambda_0$ as the discrete integral operator equation

$$
K(\lambda_0) = (1/\beta) \varphi, \tag{IV.5}
$$

where $K = \hat{R}J_1\hat{R}$ and $\varphi = \hat{R}^{-1}\psi$. Since tr $KK^* = \text{tr}[J_1\hat{R}^2]^2 =$ tr $[J, R^0(\lambda_0)]^2 < \infty$ by hypothesis, K is a Hilbert-Schmidt operator. Consequently from the theory of integral equations (Widom [24])

$$
\sum 1/\hat{\beta}_i^2 = \text{tr}[J_1 R^0]^2,
$$

where $\hat{\beta}_i$ is an eigenvalue of (IV.5). The result now follows by observing that the set $\{\beta_n\}$ is a subset of $\{\hat{\beta}_i\}.$

Remark (IV.1). If the point b is not an eigenvalue of J^0 , $R^0(b)$ is still a well-defined operator although now unbounded, and one can extend the above theorem to $\lambda_0 \geq b$.

In some cases Theorem (IV.5) gives a better bound than Theorem (111.1) as one approaches $\sigma_{\rm ess}(J)$. This is especially true if the coefficients in the recurrence formula oscillate about their asymptotic values.

If $|R(\lambda_0, m, k)|$ decreases as we move away from the diagonal we have

$$
N_f^+(\lambda_0) \le \left\{ \sum_{n=0}^{\infty} |a(n+1) - a^0(n+1)| \left(|R^0(\lambda_0, n+1, n+1)| + |R^0(\lambda_0, n, n)| \right) + |b(n) - b^0(n)| |R^0(\lambda_0, n, n)| \right\}^2.
$$

EXAMPLE (IV.1) (matrix orthogonal polynomials). Let l_2 denote the Hilbert space of vectors $w = (w_i, ..., w_p)$, where $w_i \in l_2$. The scalar product on l_2^p is the natural one $(f, g) = \sum_{i=1}^p (f_i, g_i)$, where (f_i, g_i) is the scalar product in I_2 . Let $e_i^p = (e_i, e_{i+1} \cdots e_{i+p-1})$, where e_i is the usual unit vector in l_2 . Suppose $J: D(J) \rightarrow l_2^p$, $D(J) \subset l_2^p$, is a self-adjoint operator with the representation

$$
Je_{np}^p = A(n+1) e_{(n+1)p}^p + B(n) e_{np}^p + A(n) e_{(n-1)p}^p \qquad (IV.6)
$$

and

$$
Je_0^p = A(1) e_p^p + B(0) e_0^p, \tag{IV.7}
$$

where $A(n+1)$ and $B(n)$ are assumed to be $p \times p$ real symmetric matrices and $A(n+1) > 0$. We assume that $J = J^0 + J_1$, where $J_1 = J - J^0$ is a compact operator and J^0 is a self-adjoint operator satisfying (IV.6) and (IV.7) with $A(n+1)$ and $B(n)$ replaced by $A^{0}(n+1)$ and $B^{0}(n)$, respectively. Constructing the matrix polynomial solutions satisfying the equations

$$
A^{0}(n+1) p^{0}(\lambda, n+1) + B^{0}(n) p^{0}(\lambda, n) + A^{0}(n) p^{0}(\lambda, n-1)
$$

= $\lambda p^{0}(\lambda, n), \qquad n = 0, 1, 2, ...$

with the initial conditions

$$
p^{0}(\lambda, 0) = I
$$
, $p^{0}(\lambda, -1) = 0$,

one finds that

$$
\int p^{0}(\lambda, n) du^{0} p^{0}(\lambda, m)^{+} = I \, \delta_{n,m},
$$

where A^+ is the hermitian conjugate of A, u^0 is the spectral measure associated with J^0 , and I is the $p \times p$ identity matrix. Writing $Q^0(\lambda, n)$, the matrix function of the second kind, as

$$
Q(\lambda, n) = \int \frac{p^{0}(x, n)}{\lambda - x} du^{0}, \qquad n \geqslant 0,
$$

one has that the matrix analog to (IV.2) is

$$
R^{0}(\lambda, n, m) = \begin{cases} -Q^{0}(\lambda, n) p^{0}(\lambda, m)^{+}, & n \geq m \\ -p^{0}(\lambda, n) Q^{0}(\lambda, m)^{+}, & 0 \leq n < m, \end{cases}
$$

Assuming $\sigma(J^0) \subset (c, a]$, $a < \infty$, with $a \in \sigma_{ess}(J^0)$, Theorem (IV.3) yields for $\lambda_0 > a$ that

$$
N_J^+(\lambda_0)\leqslant \operatorname{tr}(J_1R^0(\lambda_0))^2\leqslant \sum_{n,m=0}a(n,m)\,a(m,n),
$$

where

$$
a(n, m) = |A(n + 1) - A^{0}(n + 1)| |R^{0}(\lambda_{0}, n + 1, m)|
$$

+ |B(n) – B⁰(n)| |R⁰(\lambda_{0}, n, m)|
+ |A(n) – A⁰(n)| |R⁰(\lambda_{0}, n - 1, m)|.

Here $|A| = {\sum_{i,j} a_{i,j}^2}$ l^{1/2}. In the special case where $A^0(n) = I/2$ and $B^0(n) = 0$ one finds

$$
R^{0}(\lambda_{0}, n, m) = \begin{cases} -2z^{n+1} \left\{ \frac{z^{m+1} - z^{-m-1}}{z - 1/z} \right\} I, & n \geq m \\ -2z^{m+1} \left\{ \frac{z^{n+1} - z^{-n-1}}{z_{0} - 1/z} \right\} I, & n < m \end{cases}
$$

with $z = \lambda_0 - \sqrt{\lambda_0^2 - 1}$. Using the fact that for $\lambda_0 \ge 1$ $R(\lambda_0, n, m)$ decreases as we move away from the diagonal yields

$$
N_J^+(\lambda_0) \leq 4p^2 \left\{ \sum_{i=0}^{\infty} |A(i+1)-\frac{1}{2}I| + |B(i)| \frac{1-z^{2(i+1)}}{1-z^2} \right\}^2.
$$

ACKNOWLEDGMENTS

This work was supported in part by the NSF under Grant MCS-8002731. I would like to thank Walter Van Assche for several useful discussions.

SPECTRA OF JACOBI MATRICES 265

REFERENCES

- 1. F. V. ATKINSON, "Discrete and Continuous Boundary Problems," Academic Press, New York, 1964.
- 2. V. BARGMANN, On the number of bound states in a central field of force, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 961.
- 3. M. BIRMAN, The spectrum of singular boundary problems, Math. 56 (1961), 124.
- 4. 0. BLUMENTHAL, "Uber die Entwicklung einer willkurlichen Funktion nach den Nennerm des Kettenbruches fur $\int_{-\infty}^{\infty} [\varphi(\varepsilon)/(z - \varepsilon)] d\varepsilon$," Dissertation, Gottingen, 1898.
- 5. K. M. CASE, Orthogonal polynomials from the viewpoint of scattering theory, J. Math. Phys. 15 (1974), 2166.
- 6. K. M. CASE AND M. KAC, A discrete version of the inverse scattering problem, J. Math. Phys. 14 (1973), 594.
- 7. T. S. CHIHARA, "An Introduction to Orthogonal Polynomials," Gordon & Breach, New York, 1978.
- 8. T. S. CHIHARA, Orthogonal polynomials whose distribution functions have finite point spectra, SIAM J. Math. Anal. 11 (1980), 358.
- 9. T. S. CHIHARA, Spectral properties of orthogonal polynomials on unbounded sets, Trans. Amer. Math. Soc. 270 (1982), 623.
- 10. T. S. CHIHARA AND P. G. NEVAI, Orthogonal polynomials and measures with finitely many point masses, *J. Approx. Theory* 35 (1982), 370.
- 11. L. FONDA AND G. C. GHIRARDI, Approximate determination of the number and energies of the bound states of a physical system, Nuovo Cimento 46/47 (1966).
- 12. T. FORT, "Finite Difference Equations in the Real Domain," Oxford Univ. Press (Clarendon), London/New York, 1948.
- 13. J. S. GERONIMO, An upper bound on the number of eigenvalues of an infinite dimensional Jacobi matrix, J. Math. Phys. 6 (1982), 917.
- 14. J. S. GERONIMO AND K. M. CASE, Scattering theory and polynomials orthogonal on the real line, Trans. Amer. Math. Soc. 258 (1980), 467.
- 15. T. KATO, "Perturbation Theory for Linear Operators," Springer-Verlag, New York, 1966.
- 16. N. N. LEBEDEV, "Special Functions and Their Applications," Dover, New York, 1972.
- 17. P. G. Neval, Orthogonal polynomials, Mem. Amer. Math. Soc. 108 (1977), 213.
- 18. M. REED AND B. SIMON, "Modern Methods of Mathematical Physics. I. Functional Analysis," Academic Press, New York, 1972.
- 19. M. REED AND B. SIMON, "Modem Methods of Mathematical Physics. IV. Analysis of Operators," Academic Press, New York, 1978.
- 20. W. RUDIN, "Functional Analysis," McGraw-Hill, New York, 1973.
- 21. J. SCHWINGER, On the bound states of a given potential, Proc. Nat. Acad. Sci. U.S.A. 47 $(1911), 122.$
- 22. G. SzEGÖ, "Orthogonal Polynomials," 4th ed., Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, RI, 1978.
- 23. H. S. WALL, "Analytic Theory of Continued Fractions," Chelsea, New York, 1917.
- 24. H. WIDOM, "Lectures on Integral Equations," Van Nostrand, New York, 1969.