58 research outputs found

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Space System Architecture Down-Selection for Manned Mars Missions

    No full text

    aCORN: Measuring the electron-antineutrino correlation in neutron beta decay

    No full text
    The aCORN experiment uses a novel asymmetry method to measure the electron-antineutrino correlation (a-coefficient) in free neutron decay that does not require precision proton spectroscopy. aCORN completed two physics runs at the NIST Center for Neutron Research. The first run on the NG-6 beam line obtained the result a = 0.1090 +/- 0.0030 (stat) +/- 0.0028 (sys), the most precise to date. The second run on the new NG-C high flux beam line promises an improvement in precision to ¡ 2%. In addition we show that an improved measurement of the neutrino asymmetry (B-coefficient) can be made using the aCORN apparatus on a highly polarized neutron beam

    aCORN: Measuring the electron-antineutrino correlation in neutron beta decay

    Get PDF
    The aCORN experiment uses a novel asymmetry method to measure the electron-antineutrino correlation (a-coefficient) in free neutron decay that does not require precision proton spectroscopy. aCORN completed two physics runs at the NIST Center for Neutron Research. The first run on the NG-6 beam line obtained the result a = 0.1090 +/- 0.0030 (stat) +/- 0.0028 (sys), the most precise to date. The second run on the new NG-C high flux beam line promises an improvement in precision to ¡ 2%. In addition we show that an improved measurement of the neutrino asymmetry (B-coefficient) can be made using the aCORN apparatus on a highly polarized neutron beam
    • …
    corecore