6 research outputs found
Quantum Phase Transitions and the Extended Coupled Cluster Method
We discuss the application of an extended version of the coupled cluster
method to systems exhibiting a quantum phase transition. We use the lattice
O(4) non-linear sigma model in (1+1)- and (3+1)-dimensions as an example. We
show how simple predictions get modified, leading to the absence of a phase
transition in (1+1) dimensions, and strong indications for a phase transition
in (3+1) dimensions
The Extended Coupled Cluster Treatment of Correlations in Quantum Magnets
The spin-half XXZ model on the linear chain and the square lattice are
examined with the extended coupled cluster method (ECCM) of quantum many-body
theory. We are able to describe both the Ising-Heisenberg phase and the
XY-Heisenberg phase, starting from known wave functions in the Ising limit and
at the phase transition point between the XY-Heisenberg and ferromagnetic
phases, respectively, and by systematically incorporating correlations on top
of them. The ECCM yields good numerical results via a diagrammatic approach,
which makes the numerical implementation of higher-order truncation schemes
feasible. In particular, the best non-extrapolated coupled cluster result for
the sublattice magnetization is obtained, which indicates the employment of an
improved wave function. Furthermore, the ECCM finds the expected qualitatively
different behaviours of the linear chain and the square lattice cases.Comment: 22 pages, 3 tables, and 15 figure
High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States
In this article, we prove that exact representations of dimer and plaquette
valence-bond ket ground states for quantum Heisenberg antiferromagnets may be
formed via the usual coupled cluster method (CCM) from independent-spin product
(e.g. N\'eel) model states. We show that we are able to provide good results
for both the ground-state energy and the sublattice magnetization for dimer and
plaquette valence-bond phases within the CCM. As a first example, we
investigate the spin-half -- model for the linear chain, and we show
that we are able to reproduce exactly the dimerized ground (ket) state at
. The dimerized phase is stable over a range of values for
around 0.5. We present evidence of symmetry breaking by considering
the ket- and bra-state correlation coefficients as a function of . We
then consider the Shastry-Sutherland model and demonstrate that the CCM can
span the correct ground states in both the N\'eel and the dimerized phases.
Finally, we consider a spin-half system with nearest-neighbor bonds for an
underlying lattice corresponding to the magnetic material CaVO (CAVO).
We show that we are able to provide excellent results for the ground-state
energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes
of this model. The exact plaquette and dimer ground states are reproduced by
the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table
Phase transition in the transverse Ising model using the extended coupled-cluster method
The phase transition present in the linear-chain and square-lattice cases of
the transverse Ising model is examined. The extended coupled cluster method
(ECCM) can describe both sides of the phase transition with a unified approach.
The correlation length and the excitation energy are determined. We demonstrate
the ability of the ECCM to use both the weak- and the strong-coupling starting
state in a unified approach for the study of critical behavior.Comment: 10 pages, 7 eps-figure
Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach
Renormalization of Hamiltonian field theory is usually a rather painful
algebraic or numerical exercise. By combining a method based on the coupled
cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian
approach to renormalization, we show that a powerful and elegant method exist
to solve such problems. The method is in principle non-perturbative, and is not
necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear
in JHE