5 research outputs found

    Dealing with Expertise and non Expertise Knowledge about Coastal Risk

    Get PDF
    2nd World Conference on Educational Technology Researches – WCETR2012The Portuguese coastal zone is of major importance to the level of national economy and to the environment, and supports a huge biodiversity and landscape. However, there has been a significant population increase within the coastal zone generating strong pressures on the environment; which thus becomes progressively weaker. To prevent and anticipate potential problems due to a lack of knowledge, or the inability to intervene and minimize impacts, this work makes a survey of three perspectives for the coastal zone of the Portuguese central region: scientific, technical and political, and another one emerging from citizens and communities

    Near-shore sediment dynamics computation under the combined effects of waves and currents

    No full text
    An integrated computational structure for non-cohesive sediment-transport and bed-level changes in near-shore regions has been developed. It is basically composed of: (1) three hydrodynamic sub-models; (2) a dynamic equation for the sediment transport (of the Bailard-type); and (3) an extended sediment balance equation. A shallow-water approximation, or Saint-Venant-type model, is utilized for the computation and up-to-date field currents, initially and after each characteristic computational period. A Berkhoff-type wave model allows us to determine the wave characteristics in deep water and intermediate water conditions. These computations make it possible to define a smaller modeling area for a non-linear wave-current model of the Boussinesq-type, including breaking waves, friction effects and improved dispersion wave characteristics. Bed topography is updated after each wave period, or a multiple of this, called computational sedimentary period. Applicability of the computational structure is confirmed through laboratory experiments. Practical results of a real-world application obtained around the S. Lourenço fortification, Tagus estuary (Portugal), with the intention of preventing the destruction of the Bugio lighthouse, are shown.http://www.sciencedirect.com/science/article/B6V1P-44NM35Y-4/1/5d4ee1fe921aba0096ad08f76d2017f

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore