5 research outputs found

    Accuracy of different oxygenation indices in estimating intrapulmonary shunting at increasing infusion rates of dobutamine in horses under general anaesthesia

    No full text
    The aim of this study was to evaluate the correlation of commonly used oxygenation indices with venous admixture (Qs/Qt) in anaesthetised horses under different infusion rates of dobutamine. Six female horses were anaesthetised with acepromazine, xylazine, diazepam, ketamine, and isoflurane, and then intubated and mechanically ventilated with 100% O2. A Swan-Ganz catheter was introduced into the left jugular vein and its tip advanced into the pulmonary artery. Horses received different standardised rates of dobutamine. For each horse, eight samples of arterial and mixed venous blood were simultaneously obtained at fixed times. Arterial and venous haemoglobin (Hb) concentration and O2 saturation, arterial oxygen partial pressure (PaO2), venous oxygen partial pressure (PvO2), and barometric pressure were measured. Arterial (CaO2), mixed venous (CvO2), and capillary (Cc′O2) oxygen contents were calculated using standard formulae. The correlations between F-shunt, arterial oxygen tension to fraction of inspired oxygen ratio (PaO2/FiO2), arterial to alveolar oxygen tension ratio (PaO2/PAO2), alveolar to arterial oxygen tension difference (P[A-a]O2), and respiratory index (P[A-a]O2/PaO2) were tested with linear regression analysis. The goodness-of-fit for each calculated formula was evaluated by means of the coefficient of determination (r2). The agreement between Qs/Qt and F-shunt was analysed with the Bland-Altman test. All tested oxygen tension-based indices were weakly correlated (r2 < 0.2) with the Qs/Qt, whereas F-shunt showed a stronger correlation (r2 = 0.73). F-shunt also showed substantial agreement with Qs/Qt independent of the dobutamine infusion rate. F-shunt better correlated with Qs/Qt than other oxygen indices in isoflurane-anaesthetised horses under different infusion rates of dobutamine

    Heritability of Strabismus: Genetic Influence Is Specific to Eso-Deviation and Independent of Refractive Error

    Get PDF
    Strabismus represents a complex oculomotor disorder characterized by the deviation of one or both eyes and poor vision. A more sophisticated understanding of the genetic liability of strabismus is required to guide searches for associated molecular variants. In this classical twin study of 1,462 twin pairs, we examined the relative influence of genes and environment in comitant strabismus, and the degree to which these influences can be explained by factors in common with refractive error. Participants were examined for the presence of latent ('phoria') and manifest ('tropia') strabismus using cover-uncover and alternate cover tests. Two phenotypes were distinguished: eso-deviation (esophoria and esotropia) and exo-deviation (exophoria and exotropia). Structural equation modeling was subsequently employed to partition the observed phenotypic variation in the twin data into specific variance components. The prevalence of eso-deviation and exo-deviation was 8.6% and 20.7%, respectively. For eso-deviation, the polychoric correlation was significantly greater in monozygotic (MZ) (r = 0.65) compared to dizygotic (DZ) twin pairs (r = 0.33), suggesting a genetic role (p = .003). There was no significant difference in polychoric correlation between MZ (r = 0.55) and DZ twin pairs (r = 0.53) for exo-deviation (p = .86), implying that genetic factors do not play a significant role in the etiology of exo-deviation. The heritability of an eso-deviation was 0.64 (95% Cl 0.50-0.75). The additive genetic correlation for eso-deviation and refractive error was 0.13 and the bivariate heritability (i.e., shared variance) was less than 1%, suggesting negligible shared genetic effect. This study documents a substantial heritability of 64% for eso-deviation, yet no corresponding heritability for exo-deviation, suggesting that the genetic contribution to strabismus may be specific to eso-deviation. Future studies are now needed to identify the genes associated with eso-deviation and unravel their mechanisms of action

    Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

    No full text
    Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multi-ancestry participants for IOP. We confirm genetic association of known loci for IOP and primary open-angle glaucoma (POAG) and identify four new IOP-associated loci located on chromosome 3q25.31 within the FNDC3B gene (P = 4.19 Ă— 10 '8 for rs6445055), two on chromosome 9 (P = 2.80 Ă— 10 '11 for rs2472493 near ABCA1 and P = 6.39 Ă— 10 '11 for rs8176693 within ABO) and one on chromosome 11p11.2 (best P = 1.04 Ă— 10 '11 for rs747782). Separate meta-analyses of 4 independent POAG cohorts, totaling 4,284 cases and 95,560 controls, showed that 3 of these loci for IOP were also associated with POAG
    corecore