11 research outputs found

    Chiral molecule adsorption on helical polymers

    Full text link
    We present a lattice model for helicity induction on an optically inactive polymer due to the adsorption of exogenous chiral amine molecules. The system is mapped onto a one-dimensional Ising model characterized by an on-site polymer helicity variable and an amine occupancy one. The equilibrium properties are analyzed at the limit of strong coupling between helicity induction and amine adsorption and that of non-interacting adsorbant molecules. We discuss our results in view of recent experimental results

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Effect of low dose aspirin on platelet adherence after carotid endarterectomy in dogs.

    No full text

    Arsenic phytoextraction and hyperaccumulation by fern species Fitoextração e hiperacumulação de arsênio por espécies de samambaias

    Get PDF
    Arsenic (As) is an ubiquitous trace metalloid found in all environmental media. Its presence at elevated concentrations in soils derives from both anthropogenic and natural inputs. Arsenic is a toxic and carcinogenic element, which has caused severe environmental and health problem worldwide. Technologies currently available for the remediation of arsenic-contaminated sites are expensive, environmentally disruptive, and potentially hazardous to workers. Phytoextraction, a strategy of phytoremediation, uses plants to clean up contaminated soils and has been successfully applied to arsenic contaminated soils. It has the advantage of being cost-effective and environmentally friendly. A major step towards the development of phytoextraction of arsenic-impacted soils is the discovery of the arsenic hyper accumulation in ferns, first in Pteris vittata, which presented an extraordinary capacity to accumulate 2.3% arsenic in its biomass. Another fern, Pityrogramma calomelanos was found to exhibit the same hyperaccumulating characteristics. After that, screening experiments have revealed that the Pteris genus is really unique in that many species have the potential to be used in phytoextraction of arsenic. In general, these plants seem to have both constitutive and adaptive mechanisms for accumulating or tolerating high arsenic concentration. In the past few years, much work has been done to understand and improve the hyperaccumulating capability of these amazing plants. In particular, the field of molecular biology seems to hold the key for the future of the phytoremediation.<br>O arsênio e um metalóide traço encontrado basicamente em todos os ambientes. Elevadas concentrações de arsênio no solo podem acontecer naturalmente devido ao intemperismo de rochas ricas em arsênio, como também de atividades antropogênicas. O arsênio é um elemento tóxico e cancerígeno. Em muitas partes do mundo, a contaminação pelo arsênio tem causado problemas ambientais e de saude. As técnicas disponíveis para a remediação do arsênio são economicamente proibitivas, destroem a paisagem natural e ainda podem afetar a saúde de pessoas diretamente envolvidas no processo. A fitoextração, uma das estratégias da fitoremediação, utiliza plantas para descontaminar solos e tem sido aplicada com sucesso em solos contaminados com arsênio e outros elementos. Dentre muitas vantagens, essa técnica tem baixo custo quando comparada com as convencionais. Um ponto chave no desenvolvimento da fitoextração foi a constatação de que samambaias hiperacumulam arsênio. Primeiro, em Pteris vittata, que apresentou extraordinária capacidade para remover arsênio do solo, concentrando 2.3% do arsênio na biomassa. Em seguida, foi observado que a samambaia Pityrogramma calomelanos possui capacidade semelhante para acumular arsênio. Essa característica peculiar foi observada em outras samambaias do genero Pteris. Em geral, essas plantas parecem apresentar mecanismos constitutivos e adaptativos que permitem elevada absorção e sobrevivência em solos com altas concentrações de arsênio. Muitas pesquisas têm sido conduzidas no sentido de entender e aumentar a capacidade de aborção de arsênio dessas plantas. Em particular, a chave para a aplicação bem sucedida da fitoremediação parece estar na biologia molecular

    Rate-Limiting Steps in Ethanol Metabolism and Approaches to Changing These Rates Biochemically

    No full text
    corecore