1,015 research outputs found

    Anisotropic Bose-Einstein condensates and completely integrable dynamical systems

    Full text link
    A Gaussian ansatz for the wave function of two-dimensional harmonically trapped anisotropic Bose-Einstein condensates is shown to lead, via a variational procedure, to a coupled system of two second-order, nonlinear ordinary differential equations. This dynamical system is shown to be in the general class of Ermakov systems. Complete integrability of the resulting Ermakov system is proven. Using the exact solution, collapse of the condensate is analyzed in detail. Time-dependence of the trapping potential is allowed

    Low energy collective modes, Ginzburg-Landau theory, and pseudogap behavior in superconductors with long-range pairing interactions

    Full text link
    We study the superconducting instability in systems with long but finite ranged, attractive, pairing interactions. We show that such long-ranged superconductors exhibit a new class of fluctuations in which the internal structure of the Cooper pair wave function is soft, and thus lead to "pseudogap" behavior in which the actual transition temperature is greatly depressed from its mean field value. These fluctuations are {\it not} phase fluctuations of the standard superconducting order parameter, and lead to a highly unusual Ginzburg-Landau description. We suggest that the crossover between the BCS limit of a short-ranged attraction and our problem is of interest in the context of superconductivity in the underdoped cuprates.Comment: 20 pages with one embedded ps figure. Minor revisions to the text and references. Final version to appear in PRB on Nov. 1st, 200

    Macroscopic quantum superpositions in highly-excited strongly-interacting many-body systems

    Full text link
    We demonstrate a break-down in the macroscopic (classical-like) dynamics of wave-packets in complex microscopic and mesoscopic collisions. This break-down manifests itself in coherent superpositions of the rotating clockwise and anticlockwise wave-packets in the regime of strongly overlapping many-body resonances of the highly-excited intermediate complex. These superpositions involve ∼104\sim 10^4 many-body configurations so that their internal interactive complexity dramatically exceeds all of those previously discussed and experimentally realized. The interference fringes persist over a time-interval much longer than the energy relaxation-redistribution time due to the anomalously slow phase randomization (dephasing). Experimental verification of the effect is proposed.Comment: Title changed, few changes in the abstract and in the main body of the paper, and changes in the font size in the figure. Uses revTex4, 4 pages, 1 ps figur

    Stable and Metastable Structures of Cobalt on Cu(001): An ab initio Study

    Full text link
    We report results of density-functional theory calculations on the structural, magnetic, and electronic properties of (1x1)-structures of Co on Cu(001) for coverages up to two monolayers. In particular we discuss the tendency towards phase separation in Co islands and the possibility of segregation of Cu on top of the Co-film. A sandwich structure consisting of a bilayer Co-film covered by 1ML of Cu is found to be the lowest-energy configuration. We also discuss a bilayer c(2x2)-alloy which may form due to kinetic reasons, or be stabilized at strained surface regions. Furthermore, we study the influence of magnetism on the various structures and, e.g., find that Co adlayers induce a weak spin-density wave in the copper substrate.Comment: 11 pages including 4 figures. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide

    Get PDF
    The aims of this study were to compare methods for examining measurements of CH4 and CO2 emissions of dairy cows during milking and to assess repeatability and variation of CH4 emissions among individual dairy cows. Measurements of CH4 and CO2 emissions from 36 cows were collected in 3 consecutive feeding periods. In the first period, cows were fed a commercial partial mixed ration (PMR) containing 69% forage. In the second and third periods, the same 36 cows were fed a high-forage PMR ration containing 75% forage, with either a high grass silage or high maize silage content. Emissions of CH4 during each milking were examined using 2 methods. First, peaks in CH4 concentration due to eructations during milking were quantified. Second, ratios of CH4 and CO2 average concentrations during milking were calculated. A linear mixed model was used to assess differences between PMR. Variation in CH4 emissions was observed among cows after adjusting for effects of lactation number, week of lactation, diet, individual cow, and feeding period, with coefficients of variation estimated from variance components ranging from 11 to 14% across diets and methods of quantifying emissions. No significant difference was detected between the 3 PMR in CH4 emissions estimated by either method. Emissions of CH4 calculated from eructation peaks or as CH4 to CO2 ratio were positively associated with forage dry matter intake. Ranking of cows according to CH4 emissions on different diets was correlated for both methods, although rank correlations and repeatability were greater for CH4 concentration from eructation peaks than for CH4-to-CO2 ratio. We conclude that quantifying enteric CH4 emissions either using eructation peaks in concentration or as CH4-to-CO2 ratio can provide highly repeatable phenotypes for ranking cows on CH4 output

    Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model

    Full text link
    Comparing experimental data for high temperature cuprate superconductors with numerical results for electronic models, it is becoming apparent that a hopping along the plaquette diagonals has to be included to obtain a quantitative agreement. According to recent estimations the value of the diagonal hopping t′t' appears to be material dependent. However, the values for t′t' discussed in the literature were obtained comparing theoretical results in the weak coupling limit with experimental photoemission data and band structure calculations. The goal of this paper is to study how t′t' gets renormalized as the interaction between electrons, UU, increases. For this purpose, the effect of adding a bare diagonal hopping t′t' to the fully interacting two dimensional Hubbard model Hamiltonian is investigated using numerical techniques. Positive and negative values of t′t' are analyzed. Spin-spin correlations, n(k)n(\bf{k}), ⟨n⟩\langle n\rangle vs μ\mu, and local magnetic moments are studied for values of U/tU/t ranging from 0 to 6, and as a function of the electronic density. The influence of the diagonal hopping in the spectral function A(k,ω)A(\bf{k},\omega) is also discussed, and the changes in the gap present in the density of states at half-filling are studied. We introduce a new criterion to determine probable locations of Fermi surfaces at zero temperature from n(k)n(\bf{k}) data obtained at finite temperature. It appears that hole pockets at k=(π/2,π/2){\bf{k}}=(\pi/2,\pi/2) may be induced for negative t′t' while a positive t′t' produces similar features at k=(π,0){\bf{k}}=(\pi,0) and (0,π)(0,\pi). Comparisons with the standard 2D Hubbard (t′=0t'=0) model indicate that a negative t′t' hopping amplitude appears to be dynamically generated. In general, we conclude that it is very dangerous to extract a bare parameter of the Hamiltonian (t′)(t') from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with uufile
    • …
    corecore