483 research outputs found
Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer
Original article can be found at: http://www.atmos-chem-phys.net/10/issue10.html Copyright - the authors. Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified. The article and any associated published material is distributed under the Creative Commons Attribution 3.0 License.Aerosol particle size distributions were measured below and above a tropical rainforest canopy in Borneo, Malaysia, in June/July 2008 using the WIBS-3: a single particle dual channel fluorescence spectrometer. Material in the size range 0.8–20 μm was characterized according to optical equivalent diameter (DP), morphology and fluorescence at 310–400 nm and 400–600 nm following excitation at 280 nm and 370 nm respectively. Particles fluorescent after both excitations are likely to be fluorescent primary biological aerosol particles (FBAP). Measured FBAP number concentration (NFBAP) at both sites exhibited clear diurnal cycles. The largest variability was observed in the understorey, where NFBAP reached a minimum of 50–100 L−1 in late morning. In mid afternoon it exhibited strong transient fluctuations as large as 4000 L−1 that were followed by sustained concentrations of 1000–2500 L−1 that reduced steadily between midnight and sunrise. Above the canopy FBAP number ranged from 50–100 L−1 during the daytime to 200–400 L−1 at night but did not exhibit the transient enhancements seen in the understorey. The strong FBAP fluctuations were attributed to the release of fungal spores below the canopy and appeared to be linked to elevated relative humidity. The mean FBAP number fraction in the size range 0.8 μm<DP<20 μm was 55% in the understorey and 28% above canopy. A size mode at 2 μm<DP<4 μm appears at both sites and is primarily FBAP, which dominated the coarse (DP≥2.5 μm) number concentration at both sites, accounting for 75% in the understorey and 57% above the canopy. In contrast, the concentration of non-fluorescent particles (NNON) at both sites was typically 200–500 L−1, the majority of which occupied a size mode at 0.8<DP<1.5 μm. Enhanced understorey NNON was observed daily in mid-afternoon and also at midday on three occasions: the former coincided with the FBAP enhancements and measured approximately 10% of their magnitude; the latter occurred independently of the NFBAP diurnal cycle and comprised particles smaller than 2 μm. Particle diameter of 3–5 μm is consistent with smaller fungal spores, though absolute identification of biological species is not possible with the UV-LIF technique. Based on the measured FBAP and non-fluorescent particle abundances and their observed recovery times following rain showers, FBAP originated beneath the canopy while the non-fluorescent material was transported from further away. It is concluded that these separate sources contributed the majority of the aerosol measured by the WIBS-3 at both sites.Peer reviewe
Recommended from our members
Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling
In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than −8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (−7.5 °C).
The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1) could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L−1) was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice.
Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM). These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them to freeze and form instant large riming particles. The broadening of the droplet size-distribution by collision-coalescence was, therefore, a vital step in this process as this was required to generate the large number of ice crystals observed in the time available.
Simulations were also performed with the WRF (Weather, Research and Forecasting) model. The results showed that while HM does act to increase the mass and number concentration of ice particles in these model simulations it was not found to be critical for the formation of precipitation. However, the WRF simulations produced a cloud top that was too cold and this, combined with the assumption of continual replenishing of ice nuclei removed by ice crystal formation, resulted in too many ice crystals forming by primary nucleation compared to the observations and parcel modelling
Classical Evolution of Quantum Elliptic States
The hydrogen atom in weak external fields is a very accurate model for the
multiphoton excitation of ultrastable high angular momentum Rydberg states, a
process which classical mechanics describes with astonishing precision. In this
paper we show that the simplest treatment of the intramanifold dynamics of a
hydrogenic electron in external fields is based on the elliptic states of the
hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical
symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields the {\it exact} evolution in time of these quantum
states, and so we explain the surprising match between purely classical
perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are
ultrastable hydrogenic eigenstates which have maximum total angular momentum
and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
Recommended from our members
Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling
In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than −8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (−7.5 °C).
The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1) could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L−1) was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice.
Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM). These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them to freeze and form instant large riming particles. The broadening of the droplet size-distribution by collision-coalescence was, therefore, a vital step in this process as this was required to generate the large number of ice crystals observed in the time available.
Simulations were also performed with the WRF (Weather, Research and Forecasting) model. The results showed that while HM does act to increase the mass and number concentration of ice particles in these model simulations it was not found to be critical for the formation of precipitation. However, the WRF simulations produced a cloud top that was too cold and this, combined with the assumption of continual replenishing of ice nuclei removed by ice crystal formation, resulted in too many ice crystals forming by primary nucleation compared to the observations and parcel modelling
The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing
The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV
solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission
launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm
and provides images of the low solar corona over a 54x54 arcmin field-of-view
with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is
designed to monitor all space-weather-relevant events and features in the low
solar corona. Given the limited resources of the PROBA2 microsatellite, the
SWAP telescope is designed with various innovative technologies, including an
off-axis optical design and a CMOS-APS detector. This article provides
reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Parental Attitudes and Their Influence on the Medical Management of Diabetic Adolescents
Competent professional assistance can meet the challenges of keeping parents and patients on a stable and sound emotional course as the diabetic adolescent grows up.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66551/2/10.1177_000992287000900814.pd
The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism
Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions
Dust in Supernovae and Supernova Remnants I : Formation Scenarios
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
- …
