483 research outputs found

    Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer

    Get PDF
    Original article can be found at: http://www.atmos-chem-phys.net/10/issue10.html Copyright - the authors. Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified. The article and any associated published material is distributed under the Creative Commons Attribution 3.0 License.Aerosol particle size distributions were measured below and above a tropical rainforest canopy in Borneo, Malaysia, in June/July 2008 using the WIBS-3: a single particle dual channel fluorescence spectrometer. Material in the size range 0.8–20 μm was characterized according to optical equivalent diameter (DP), morphology and fluorescence at 310–400 nm and 400–600 nm following excitation at 280 nm and 370 nm respectively. Particles fluorescent after both excitations are likely to be fluorescent primary biological aerosol particles (FBAP). Measured FBAP number concentration (NFBAP) at both sites exhibited clear diurnal cycles. The largest variability was observed in the understorey, where NFBAP reached a minimum of 50–100 L−1 in late morning. In mid afternoon it exhibited strong transient fluctuations as large as 4000 L−1 that were followed by sustained concentrations of 1000–2500 L−1 that reduced steadily between midnight and sunrise. Above the canopy FBAP number ranged from 50–100 L−1 during the daytime to 200–400 L−1 at night but did not exhibit the transient enhancements seen in the understorey. The strong FBAP fluctuations were attributed to the release of fungal spores below the canopy and appeared to be linked to elevated relative humidity. The mean FBAP number fraction in the size range 0.8 μm<DP<20 μm was 55% in the understorey and 28% above canopy. A size mode at 2 μm<DP<4 μm appears at both sites and is primarily FBAP, which dominated the coarse (DP≥2.5 μm) number concentration at both sites, accounting for 75% in the understorey and 57% above the canopy. In contrast, the concentration of non-fluorescent particles (NNON) at both sites was typically 200–500 L−1, the majority of which occupied a size mode at 0.8<DP<1.5 μm. Enhanced understorey NNON was observed daily in mid-afternoon and also at midday on three occasions: the former coincided with the FBAP enhancements and measured approximately 10% of their magnitude; the latter occurred independently of the NFBAP diurnal cycle and comprised particles smaller than 2 μm. Particle diameter of 3–5 μm is consistent with smaller fungal spores, though absolute identification of biological species is not possible with the UV-LIF technique. Based on the measured FBAP and non-fluorescent particle abundances and their observed recovery times following rain showers, FBAP originated beneath the canopy while the non-fluorescent material was transported from further away. It is concluded that these separate sources contributed the majority of the aerosol measured by the WIBS-3 at both sites.Peer reviewe

    Classical Evolution of Quantum Elliptic States

    Get PDF
    The hydrogen atom in weak external fields is a very accurate model for the multiphoton excitation of ultrastable high angular momentum Rydberg states, a process which classical mechanics describes with astonishing precision. In this paper we show that the simplest treatment of the intramanifold dynamics of a hydrogenic electron in external fields is based on the elliptic states of the hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical symmetry group of the Kepler problem. Moreover, we also show that classical perturbation theory yields the {\it exact} evolution in time of these quantum states, and so we explain the surprising match between purely classical perturbative calculations and experiments. Finally, as a first application, we propose a fast method for the excitation of circular states; these are ultrastable hydrogenic eigenstates which have maximum total angular momentum and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.

    The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    Full text link
    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Parental Attitudes and Their Influence on the Medical Management of Diabetic Adolescents

    Full text link
    Competent professional assistance can meet the challenges of keeping parents and patients on a stable and sound emotional course as the diabetic adolescent grows up.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66551/2/10.1177_000992287000900814.pd

    The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism

    Get PDF
    Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
    corecore