9 research outputs found

    Plans for laser spectroscopy of trapped cold hydrogen-like HCI

    Full text link
    Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB

    Plans for laser spectroscopy of trapped cold hydrogen-like HCI

    Full text link
    Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB

    Plans for laser spectroscopy of trapped cold hydrogen-like HCI

    Full text link
    Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB

    Impact of droplets onto surfactant-laden thin liquid films

    No full text
    We study the effect of insoluble surfactants on the impact of surfactant-free droplets on surfactant-laden thin liquid films via a fully three-dimensional direct numerical simulations approach that employs a hybrid interface-tracking/level-set method, and by taking into account surfactant-induced Marangoni stresses due to gradients in interfacial surfactant concentration. Our numerical predictions for the temporal evolution of the surfactant-free crown are validated against the experimental work by Che & Matar (2017). We focus on the 'crown-splash regime', and we observe that the crown dynamics evolves through various stages: from the the growth of linear modes (through a Rayleigh-Plateau instability) to the development of nonlinearities leading to primary and secondary breakup events (through droplet shedding modulated by an end-pinching mechanism). We show that the addition of surfactants does not affect the wave selection via the Rayleigh-Plateau instability. However, the presence of surfactants play a key role in the late stages of the dynamics as soon as the ligaments are driven out from the rim. Surfactant-induced Marangoni stresses delay the end-pinching mechanisms to result in longer ligaments prior to their capillary singularity, while also promoting the spanwise merging between ligaments. In addition, we show that the addition of surfactants leads to surface rigidification and consequently to the retardation of the flow dynamics

    Impact of droplets onto surfactant-laden thin liquid films

    No full text
    We study the effect of insoluble surfactants on the impact of surfactant-free droplets on surfactant-laden thin liquid films via a fully three-dimensional direct numerical simulations approach that employs a hybrid interface-tracking/level-set method, and by taking into account surfactant-induced Marangoni stresses due to gradients in interfacial surfactant concentration. Our numerical predictions for the temporal evolution of the surfactant-free crown are validated against the experimental work by Che & Matar (2017). We focus on the 'crown-splash regime', and we observe that the crown dynamics evolves through various stages: from the the growth of linear modes (through a Rayleigh-Plateau instability) to the development of nonlinearities leading to primary and secondary breakup events (through droplet shedding modulated by an end-pinching mechanism). We show that the addition of surfactants does not affect the wave selection via the Rayleigh-Plateau instability. However, the presence of surfactants play a key role in the late stages of the dynamics as soon as the ligaments are driven out from the rim. Surfactant-induced Marangoni stresses delay the end-pinching mechanisms to result in longer ligaments prior to their capillary singularity, while also promoting the spanwise merging between ligaments. In addition, we show that the addition of surfactants leads to surface rigidification and consequently to the retardation of the flow dynamics

    Poster: Anatomy of a Crown Splash

    No full text
    International audienceAnatomy of a Crown Splash 3D Direct Numerical Simulations of surfactant-free droplet impacting a surfactant-laden thin liquid layer resulting in a crown splash. Colour indicates surfactant concentration

    Impact of droplets onto surfactant-laden thin liquid films

    Get PDF
    We study the effect of insoluble surfactants on the impact of surfactant-free droplets on surfactant-laden thin liquid films via a fully three-dimensional direct numerical simulations approach that employs a hybrid interface-tracking/level-set method, and by taking into account surfactant-induced Marangoni stresses due to gradients in interfacial surfactant concentration. Our numerical predictions for the temporal evolution of the surfactant-free crown are validated against the experimental work by Che & Matar (2017). We focus on the 'crown-splash regime', and we observe that the crown dynamics evolves through various stages: from the the growth of linear modes (through a Rayleigh-Plateau instability) to the development of nonlinearities leading to primary and secondary breakup events (through droplet shedding modulated by an end-pinching mechanism). We show that the addition of surfactants does not affect the wave selection via the Rayleigh-Plateau instability. However, the presence of surfactants play a key role in the late stages of the dynamics as soon as the ligaments are driven out from the rim. Surfactant-induced Marangoni stresses delay the end-pinching mechanisms to result in longer ligaments prior to their capillary singularity, while also promoting the spanwise merging between ligaments. In addition, we show that the addition of surfactants leads to surface rigidification and consequently to the retardation of the flow dynamics
    corecore