2,519 research outputs found
Development of a microfluidic unit for sequencing fluid samples for composition analysis
A microfluidic sample-sequencing unit was developed as a part of a high-throughput catalyst screening facility. It may find applications wherever a fluid is to be selected
for analysis from any one of several sources, such as microreactors operating in parallel. The novel feature is that the key components are fluidic valves having no moving parts and operating at very low sample flow Reynolds numbers, typically below 100. The inertial
effects utilized in conventional no-moving-part fluidics are nearly absent; instead, the flows are pressure-driven. Switching between input channels is by high-Reynolds-number control flows, the jet pumping effect of which simultaneously cleans the downstream cavities to prevent crosscontamination between the samples. In the configuration discussed here, the integrated circuit
containing an array of 16 valves is etched into an 84mm diameter stainless steel foil. This is clamped into a massive assembly containing 16 mini-reactors operated at up to 400C and 4 MPa. This paper describes the design basis and experience with prototypes. Results of CFD
analysis, with scrutiny of some discrepancies when compared with flow visualization, is included
Chiral rings and GSO projection in Orbifolds
The GSO projection in the twisted sector of orbifold background is sometimes
subtle and incompatible descriptions are found in literatures. Here, from the
equivalence of partition functions in NSR and GS formalisms, we give a simple
rule of GSO projection for the chiral rings of string theory in \C^r/\Z_n,
. Necessary constructions of chiral rings are given by explicit mode
analysis.Comment: 24 page
Today's View on Strangeness
There are several different experimental indications, such as the
pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest
that the nucleon wave function contains a hidden s bar s component. This is
expected in chiral soliton models, which also predicted the existence of new
exotic baryons that may recently have been observed. Another hint of hidden
strangeness in the nucleon is provided by copious phi production in various N
bar N annihilation channels, which may be due to evasions of the
Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s
bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic
scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the
International Conference on Parity Violation and Hadronic Structure,
Grenoble, June 200
The Imprint of Gravitational Waves on the Cosmic Microwave Background
Long-wavelength gravitational waves can induce significant temperature
anisotropy in the cosmic microwave background. Distinguishing this from
anisotropy induced by energy density fluctuations is critical for testing
inflationary cosmology and theories of large-scale structure formation. We
describe full radiative transport calculations of the two contributions and
show that they differ dramatically at angular scales below a few degrees. We
show how anisotropy experiments probing large- and small-angular scales can
combine to distinguish the imprint due to gravitational waves.Comment: 11 pages, Penn Preprint-UPR-
Inter- and intra-beach thermal variation for Green Turtle nests on Ascension Island, South Atlantic
Nest temperatures for green turtles (Chelonia mydas) nesting on Ascension Island, South Atlantic (7°57\u27S 14°22\u27W), were examined. Temperature probes were placed into nests on two beaches, Long Beach (26 nests) and North East Bay (8 nests). Within these beaches there was relatively little thermal variation (SD of nest temperature was 0.32°C for Long Beach and 0.30°C for North East Bay). To examine inter-beach thermal variation temperature probes were buried at 55 cm on 12 beaches. Inter-beach thermal variation was large and was related to the beach albedo with the darkest beach (albedo, 016) being 4.2°C warmer than the lightest coloured beach (albedo, 0.73)
Fuzzy Rings in D6-Branes and Magnetic Field Background
We use the Myers T-dual nonabelin Born-Infeld action to find some new
nontrivial solutions for the branes in the background of D6-branes and Melvin
magnetic tube field. In the D6-Branes background we can find both of the fuzzy
sphere and fuzzy ring solutions, which are formed by the gravitational
dielectric effect. We see that the fuzzy ring solution has less energy then
that of the fuzzy sphere. Therefore the fuzzy sphere will decay to the fuzzy
ring configuration. In the Melvin magnetic tube field background there does not
exist fuzzy sphere while the fuzzy ring configuration may be formed by the
magnetic dielectric effect. The new solution shows that propagating in
the D6-branes and magnetic tube field background may expand into a rotating
fuzzy ring. We also use the Dirac-Born-Infeld action to construct the ring
configuration from the D-branes.Comment: Latex, 15 pages, detailed comments in section 2, typos correcte
Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer
We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures
On slip pulses at a sheared frictional viscoelastic/ non deformable interface
We study the possibility for a semi-infinite block of linear viscoelastic
material, in homogeneous frictional contact with a non-deformable one, to slide
under shear via a periodic set of ``self-healing pulses'', i.e. a set of
drifting slip regions separated by stick ones. We show that, contrary to
existing experimental indications, such a mode of frictional sliding is
impossible for an interface obeying a simple local Coulomb law of solid
friction. We then discuss possible physical improvements of the friction model
which might open the possibility of such dynamics, among which slip weakening
of the friction coefficient, and stress the interest of developing systematic
experimental investigations of this question.Comment: 23 pages, 3 figures. submitted to PR
An Inquiry into the Practice of Proving in Low-Dimensional Topology
The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in low-dimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two- and three-dimensional space and motor agency. This imagination allows recognizing the transformations which connect different pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a specific practice: this form of reasoning is subject-matter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in low-dimensional topology
Spacetime Energy Decreases under World-sheet RG Flow
We study renormalization group flows in unitary two dimensional sigma models
with asymptotically flat target spaces. Applying an infrared cutoff to the
target space, we use the Zamolodchikov c-theorem to demonstrate that the target
space ADM energy of the UV fixed point is greater than that of the IR fixed
point: spacetime energy decreases under world-sheet RG flow. This result
mirrors the well understood decrease of spacetime Bondi energy in the time
evolution process of tachyon condensation.Comment: 25 pages, 4 figures, harvma
- …
