10 research outputs found

    Search for lorentz invariance and CPT violation with the MINOS Far detector

    No full text
    We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector. © 2010 The American Physical Society

    Search for muon-Neutrino to electron-Neutrino transitions in MINOS

    No full text
    This Letter reports on a search for νμ→νe transitions by the MINOS experiment based on a 3.14×1020 protons-on-target exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of 27±5(stat)±2(syst) events predicted by the measurements in the Near Detector. If interpreted in terms of νμ→νe oscillations, this 1.5σ excess of events is consistent with sin 2(2θ13) comparable to the CHOOZ limit when |Δm2|=2.43×10-3eV2 and sin 2(2θ23)=1.0 are assumed. © 2009 The American Physical Society

    Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

    No full text
    The velocity of a ∼3GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.1±2.9×10-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mν<50MeV/c2 (99% C.L.). © 2007 The American Physical Society

    The magnetized steel and scintillator calorimeters of the MINOS experiment

    No full text
    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper. © 2008 Elsevier B.V

    The magnetized steel and scintillator calorimeters of the MINOS experiment

    Get PDF
    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper
    corecore