151 research outputs found

    Exploring the sensitivity of visual soil evaluation to traffic-induced soil compaction

    Get PDF
    peer-reviewedVisual Soil Evaluation (VSE) techniques are useful for assessing the impact of land management, particularly the identification and remediation of soil compaction. Despite an increasing body of VSE research, comparatively few studies have explored the sensitivity of VSE for capturing experimentally imposed compaction to estimate sensitivity and limit of detection. The aim of this research was to examine the ability of VSE techniques to indicate soil structure at different soil profile depths and to measure the associated soil productive function (yield) response to imposed compaction. A two-year experiment was conducted on sites with loam and sandy soils. Varying levels of wheeled traffic were imposed on plots in a randomised block design, prior to sowing winter barley (Hordeum vulgare L.). Quantitative crop and soil measurements were taken throughout the season in conjunction with VSE techniques, which assessed to 25 cm (VESS), 40 cm (Double Spade) and 80 cm (SubVESS) depth. Graduated changes were observed by soil and some crop quantitative measurements as traffic treatment varied. VESS and Double Spade successfully identified a graduated treatment effect at all sites to 40 cm depth, although diagnosis translated into a yield response for the loam but not the sandy soil. Correlation between VESS Sq scores and crop yield were found. SubVESS gave mixed signals and indicated impacts lower in the profile in certain instances. These impacts were not captured by quantitative soil measurements. This work highlights the capacity for VSE techniques to indicate soil structural damage, which may cause a crop yield response, therefore allowing appropriate soil management strategies to be deployed before yield penalties occur

    The Double Spade Method: a ‘mini-profile’ visual soil evaluation technique

    Get PDF
    peer-reviewedVisual Soil Evaluation (VSE) methods are established for soil quality assessment and focus on the examination of soil structure and associated anthropogenic impacts. VSE techniques, of which numerous types exist, are successfully used internationally both in soil research and as sustainable soil management tools. Techniques are generally categorised into profile and spade methods. Profile methods examine entire soil profiles in soil-pits to depths of ~ 1.5 m, exploring interactions between inherent soil features and anthropic management at specific sample points. Spade methods examine the upper soil profile, often by extracting sample blocks of topsoil by spade and focus on anthropic impacts. The VESS method (Guimarães et al., 2011) is a widely used spade method and involves assessment of soil sample blocks to 25 cm depth. However, in arable soils, important structural features may occur just below this depth such as plough pans, which VESS may not capture. The SubVESS method (Ball et al., 2015) follows principles of VESS but allows assessment to ~ 1 m depth. However, the later involves soil-pit excavation by mechanical means, which may be destructive, costly, time consuming and limit replication. When used in on-farm situations by farmers or advisors, full soil-pit excavation may not be desirable. Here we describe a method previously outlined (Emmet-Booth et al. 2018) called the Double Spade Method (DS) designed to examine miniprofiles in soil pits to 40 cm depth, therefore capturing potential structural features below the VESS assessment depth, without requiring full soil-pit excavation

    Dilatonic Interpretation of the Quintessence?

    Full text link
    We discuss the possibility that "quintessential effects", recently displayed by large scale observations, may be consistently described in the context of the low-energy string effective action, and we suggest a possible approach to the problem of the cosmic coincidence based on the link between the strength of the dilaton couplings and the cosmological state of our Universe.Comment: 6 pages, Revtex, four figures included using epsfig. To appear in Phys. Rev.

    Quintessence arising from exponential potentials

    Get PDF
    We demonstrate how exponential potentials that could arise in the early Universe as a result of Kaluza-Klein type compactifications of string theory, can lead to cosmological solutions which correspond to the currently observed accelerating Universe. The idea is simple, relying solely on the known scaling properties associated with exponential potentials. In particular we show that the existence of stable attractor solutions implies that the results hold for a wide range of coupling constants and initial conditions.Comment: 4 pages, 3 figures, published versio

    National geological screening : South-West England region

    Get PDF
    This report is the published product of one of a series of studies covering England, Wales and Northern Ireland commissioned by Radioactive Waste Management (RWM) Ltd. The report provides geological information about the South-west England region to underpin the process of national geological screening set out in the UK Government’s White Paper Implementing geological disposal: a framework for the long-term management of higher activity radioactive waste (DECC, 2014). The report describes geological features relevant to the safety requirements of a geological disposal facility (GDF) for radioactive waste emplaced onshore and up to 20 km offshore at depths between 200 and 1000 m from surface. It is written for a technical audience but is intended to inform RWM in its discussions with communities interested in finding out about the potential for their area to host a GDF

    Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    Full text link
    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10−510^{-5} in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.Comment: 13 pages, 10 figures, RevTex, new references adde

    Cosmology with clusters of galaxies

    Get PDF
    In this Chapter I review the role that galaxy clusters play as tools to constrain cosmological parameters. I will concentrate mostly on the application of the mass function of galaxy clusters, while other methods, such as that based on the baryon fraction, are covered by other Chapters of the book. Since most of the cosmological applications of galaxy clusters rely on precise measurements of their masses, a substantial part of my Lectures concentrates on the different methods that have been applied so far to weight galaxy clusters. I provide in Section 2 a short introduction to the basics of cosmic structure formation. In Section 3 I describe the Press--Schechter (PS) formalism to derive the cosmological mass function, then discussing extensions of the PS approach and the most recent calibrations from N--body simulations. In Section 4 I review the methods to build samples of galaxy clusters at different wavelengths. Section 5 is devoted to the discussion of different methods to derive cluster masses. In Section 6 I describe the cosmological constraints, which have been obtained so far by tracing the cluster mass function with a variety of methods. Finally, I describe in Section 7 the future perspectives for cosmology with galaxy clusters and the challenges for clusters to keep playing an important role in the era of precision cosmology.Comment: 49 pages, 19 figures, Lectures for 2005 Guillermo Haro Summer School on Clusters, to appear in "Lecture notes in Physics" (Springer
    • …
    corecore