425 research outputs found
Measurement in biological systems from the self-organisation point of view
Measurement in biological systems became a subject of concern as a
consequence of numerous reports on limited reproducibility of experimental
results. To reveal origins of this inconsistency, we have examined general
features of biological systems as dynamical systems far from not only their
chemical equilibrium, but, in most cases, also of their Lyapunov stable states.
Thus, in biological experiments, we do not observe states, but distinct
trajectories followed by the examined organism. If one of the possible
sequences is selected, a minute sub-section of the whole problem is obtained,
sometimes in a seemingly highly reproducible manner. But the state of the
organism is known only if a complete set of possible trajectories is known. And
this is often practically impossible. Therefore, we propose a different
framework for reporting and analysis of biological experiments, respecting the
view of non-linear mathematics. This view should be used to avoid
overoptimistic results, which have to be consequently retracted or largely
complemented. An increase of specification of experimental procedures is the
way for better understanding of the scope of paths, which the biological system
may be evolving. And it is hidden in the evolution of experimental protocols.Comment: 13 pages, 5 figure
Recent African derivation of Chrysomya putoria from C. chloropyga and mitochondrial DNA paraphyly of cytochrome oxidase subunit one in blowflies of forensic importance
Chrysomya chloropyga (Wiedemann) and C. putoria (Wiedemann) (Diptera: Calliphoridae) are closely related Afrotropical blowflies that breed in carrion and latrines, reaching high density in association with humans and spreading to other continents. In some cases of human death, Chyrsomya specimens provide forensic clues. Because the immature stages of such flies are often difficult to identify taxonomically, it is useful to develop DNA-based tests for specimen identification. Therefore we attempted to distinguish between C. chloropyga and C. putoria using mitochondrial DNA (mtDNA) sequence data from a 593-bp region of the gene for cytochrome oxidase subunit one (COI). Twelve specimens from each species yielded a total of five haplotypes, none being unique to C. putoria. Therefore it was not possible to distinguish between the two species using this locus. Maximum parsimony analysis indicated paraphyletic C. chloropyga mtDNA with C. putoria nested therein. Based on these and previously published data, we infer that C. putoria diverged very recently from C. chloropyga
Cerebral amyloid angiopathy is associated with decreased functional brain connectivity
Cerebral amyloid angiopathy (CAA) is a major cause of intracerebral hemorrhage and neurological decline in the elderly. CAA results in focal brain lesions, but the influence on global brain functioning needs further investigation. Here we study functional brain connectivity in patients with Dutch type hereditary CAA using resting state functional MRI. Twenty-four DNA-proven Dutch CAA mutation carriers (11 presymptomatic, 13 symptomatic) and 29 age-matched control subjects were included. Using a set of standardized networks covering the entire cortex, we assessed both within- and between-network functional connectivity. We investigated group differences using general linear models corrected for age, sex and gray matter volume. First, all mutation carriers were contrasted against control subjects and subsequently presymptomatic- and symptomatic mutation carriers against control subjects separately, to assess in which stage of the disease differences could be found. All mutation carriers grouped together showed decreased connectivity in the medial and lateral visual networks, default mode network, executive control and bilateral frontoparietal networks. Symptomatic carriers showed diminished connectivity in all but one network, and between the left and right frontoparietal networks. Presymptomatic carriers also showed diminished connectivity, but only in the frontoparietal left network. In conclusion, global brain functioning is diminished in patients with CAA, predominantly in symptomatic CAA and can therefore be considered to be a late consequence of the disease.Paroxysmal Cerebral Disorder
Outbreak of severe vomiting in dogs associated with a canine enteric coronavirus, United Kingdom
The lack of population health surveillance for companion animal populations leaves them vulnerable to the effects of novel diseases without means of early detection. We present evidence on the effectiveness of a system that enabled early detection and rapid response to a canine gastroenteritis outbreak in the United Kingdom. In January 2020, prolific vomiting among dogs was sporadically reported in the United Kingdom. Electronic health records from a nationwide sentinel network of veterinary practices confirmed a significant increase in dogs with signs of gastroenteric disease. Male dogs and dogs living with other vomiting dogs were more likely to be affected. Diet and vaccination status were not associated with the disease; however, a canine enteric coronavirus was significantly associated with illness. The system we describe potentially fills a gap in surveillance in neglected populations and could provide a blueprint for other countries
Brain Deep Medullary Veins on 7T MRI in Dutch-Type Hereditary Cerebral Amyloid Angiopathy
BACKGROUND: Deep medullary vein (DMV) changes occur in cerebral small vessel diseases (SVD) and in Alzheimer's disease. Cerebral amyloid angiopathy (CAA) is a common SVD that has a high co-morbidity with Alzheimer's disease. So far, DMVs have not been evaluated in CAA. OBJECTIVE: To evaluate DMVs in Dutch-type hereditary CAA (D-CAA) mutation carriers and controls, in relation to MRI markers associated with D-CAA. METHODS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density were quantified on 7 Tesla 3D susceptibility weighted MRI in pre-symptomatic D-CAA mutation carriers (n = 8), symptomatic D-CAA mutation carriers (n = 8), and controls (n = 25). Hemorrhagic MRI markers (cerebral microbleeds, intracerebral hemorrhages, cortical superficial siderosis, convexity subarachnoid hemorrhage), non-hemorrhagic MRI markers (white matter hyperintensities, enlarged perivascular spaces, lacunar infarcts, cortical microinfarcts), cortical grey matter perfusion, and diffusion tensor imaging parameters were assessed in D-CAA mutation carriers. Univariate general linear analysis was used to determine associations between DMV parameters and MRI markers. RESULTS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density did not differ between pre-symptomatic D-CAA mutation carriers, symptomatic D-CAA mutation carriers, and controls. No associations were found between DMV parameters and MRI markers associated with D-CAA. CONCLUSION: This study indicates that vascular amyloid-β deposition does not affect DMV parameters. In patients with CAA, DMVs do not seem to play a role in the pathogenesis of MRI markers associated with CAA
Progression of cerebral amyloid angiopathy: a pathophysiological framework
Cerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid 13, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions. This timeline of stages and the mechanistic processes that link them have substantial implications for identifying disease-modifying interventions for cerebral amyloid angiopathy and potentially for other cerebral small vessel diseases.Radiolog
NMR Study of Disordered Inclusions in the Quenched Solid Helium
Phase structure of rapidly quenched solid helium samples is studied by the
NMR technique. The pulse NMR method is used for measurements of spin-lattice
and spin-spin relaxation times and spin diffusion coefficient
for all coexisting phases. It was found that quenched samples are two-phase
systems consisting of the hcp matrix and some inclusions which are
characterized by and values close to those in liquid phase. Such
liquid-like inclusions undergo a spontaneous transition to a new state with
anomalously short times. It is found that inclusions observed in both the
states disappear on careful annealing near the melting curve. It is assumed
that the liquid-like inclusions transform into a new state - a glass or a
crystal with a large number of dislocations. These disordered inclusions may be
responsible for the anomalous phenomena observed in supersolid region.Comment: 10 pages, 3 figure
A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876
Investigations of two resonant planets orbiting a star or two resonant
satellites orbiting a planet often rely on a few resonant and secular terms in
order to obtain a representative quantitative description of the system's
dynamical evolution. We present a semianalytic model which traces the orbital
evolution of any two resonant bodies in a first- through fourth-order
eccentricity or inclination-based resonance dominated by the resonant and
secular arguments of the user's choosing. By considering the variation of
libration width with different orbital parameters, we identify regions of phase
space which give rise to different resonant ''depths,'' and propose methods to
model libration profiles. We apply the model to the GJ 876 extrasolar planetary
system, quantify the relative importance of the relevant resonant and secular
contributions, and thereby assess the goodness of the common approximation of
representing the system by just the presumably dominant terms. We highlight the
danger in using ''order'' as the metric for accuracy in the orbital solution by
revealing the unnatural libration centers produced by the second-order, but not
first-order, solution, and by demonstrating that the true orbital solution lies
somewhere ''in-between'' the third- and fourth-order solutions. We also present
formulas used to incorporate perturbations from central-body oblateness and
precession, and a protoplanetary or protosatellite thin disk with gaps, into a
resonant system. We quantify these contributions to the GJ 876 system, and
thereby highlight the conditions which must exist for multi-planet exosystems
to be significantly influenced by such factors. We find that massive enough
disks may convert resonant libration into circulation; such disk-induced
signatures may provide constraints for future studies of exoplanet systems.Comment: 39 pages of body text, 21 figures, 5 tables, 1 appendix, accepted for
publication in Celestial Mechanics and Dynamical Astronom
- …