99 research outputs found

    Large scale PV systems under non-uniform and fault conditions

    Get PDF
    Current codes of practice for PV systems lack detailed guidance regarding circuit mismatch, over or reverse current protection and unbalanced operational conditions in large PV systems. Experimental work in this field is expensive and limited by hardware and environmental resources. The available commercial simulation tools do not rigorously model the complex behaviour of PV systems operating under non-uniform conditions. In this paper a detailed cell-by-cell model of large scale PV systems is developed. The parameter set used for simulations is based on real PV modules power tolerance data and the variance in its principal parameters, thus representing a realistic power frequency distribution. The model is used to estimate and analyse losses due to circuit mismatch, analyse the causes of reverse current in the system's strings and its consequences in the system performance and to estimate energy losses due to string's fuses failures

    Optical properties of mesoporous 4H-SiC prepared by anodic electrochemical etching

    Get PDF
    Porous silicon carbide was fabricated from n-type 4H-SiC substrates via anodic electrochemical etching in HF/ethanol solution and suspended in ethanol after ultrasonication. We observed three photoluminescence bands: two at wavelengths of 303 nm and 345 nm were above the bulk bandgap and one at 455 nm was below the bulk bandgap. These blue-shifted and red-shifted emission processes reveal the interplay between quantum confinement, surface states, and band edge related optical transitions. We propose a model to explain the frequently observed deviation from the quantum confinement in the photoluminesence trends for SiC-derived nanoparticles suspended in solvents. The quantum confined properties of the SiC structures provide a route for optical tunability in the UV-blue spectrum for use in novel photonic and biomedical applications

    Facile technique for the removal of metal contamination from graphene

    Get PDF
    Metal contamination deposited on few-layer graphene (3 ± 1 monolayers) grown on SiC(0001) was successfully removed from the surface, using low cost adhesive tape. More than 99% of deposited silver contamination was removed from the surface via peeling, causing minimal damage to the graphene. A small change in the adhesion of graphene to the SiC(0001) substrate was indicated by changes observed in pleat defects on the surface; however, atomic resolution images show the graphene lattice remains pristine. Thin layers of contamination deposited via an electron gun during Auger electron spectroscopy/low energy electron diffraction measurements were also found to be removable by this technique. This contamination showed similarities to “roughened” graphene previously reported in the literature

    Identification of Slow States at the SiO2/SiC Interface through Sub-Bandgap Illumination

    Get PDF
    We show that it is possible to obtain information relating to deep level interface traps, or so called ‘slow states’, by using the photo-CV characterisation method. Sub-bandgap illumination has been chosen in order to avoid band-to-band excitation for the creation of minority carriers. This enables information to be extracted from trapping states at the SiO2/SiC interface that are energetically deep within the band gap. Empirical observations of deep level trapping states with life times in the order of tens of hours are reported and the interface trap density as a function of energy has been extracted using the Terman method. Characterisation of these interface states will aid the development of new fabrication processes, with the aim of reducing the interface trap density to the same level as that of the SiO2/Si interface and facilitating the production of higher quality SiC based devices

    Is manganese-doped diamond a ferromagnetic semiconductor?

    Full text link
    We use density-functional theoretical methods to examine the recent prediction, based on a mean-field solution of the Zener model, that diamond doped by Mn (with spin S=5/2) would be a dilute magnetic semiconductor that remains ferromagnetic well above room temperature. Our findings suggest this to be unlikely, for four reasons: (1) substitutional Mn in diamond has a low-spin S=1/2 ground state; (2) the substitutional site is energetically unfavorable relative to the much larger "divacancy" site; 3) Mn in the divacancy site is an acceptor, but with only hyperdeep levels, and hence the holes are likely to remain localized; (4) the calculated Heisenberg couplings between Mn in nearby divacancy sites are two orders of magnitude smaller than for substitutional Mn in germanium.Comment: 5 pages, 5 figure

    Variability in the area, energy and time costs of wintering waders responding to disturbance

    Get PDF
    Birds’ responses to human disturbance are interesting due to their similarities to anti-predator behaviour, and understanding this behaviour has practical applications for conservation management by informing measures such as buffer zones to protect priority species. To understand better the costs of disturbance and whether it will impact on population size, studies should quantify time-related responses as well as the more commonly reported flight initiation distance (FID). Using waders wintering on an estuarine area, we experimentally disturbed foraging birds on the Wash Embayment, UK, by walking towards them and recording their responses (FID, alert time, time spent in flight, time taken to resume feeding, and total feeding time lost). We present data for 10 species of conservation concern: Curlew Numenius arquata, Oystercatcher Haematopus ostralegus, Bar-tailed Godwit Limosa lapponica, Grey Plover Pluvialis squatarola, Redshank Tringa totanus, Knot Calidris canutus, Turnstone Arenaria interpres, Ringed Plover Charadrius hiaticula, Sanderling Calidris alba and Dunlin Calidris alpina. Larger species responded more strongly, response magnitude was greater under milder environmental conditions, and responses varied over both small and large spatial scales. The energetic costs of individual responses, however, were low relative to daily requirements and disturbance events were unlikely to be frequent enough to seriously limit foraging time. We suggest, therefore, that wintering wader populations on the Wash are not currently significantly negatively impacted by human disturbance during the intertidal foraging period. This is also likely to be the case at other estuarine sites with comparable access levels, visitor patterns, invertebrate food availability and environmental conditions

    Signatures of chaotic tunnelling

    Full text link
    Recent experiments with cold atoms provide a significant step toward a better understanding of tunnelling when irregular dynamics is present at the classical level. In this paper, we lay out numerical studies which shed light on the previous experiments, help to clarify the underlying physics and have the ambition to be guidelines for future experiments.Comment: 11 pages, 9 figures, submitted to Phys. Rev. E. Figures of better quality can be found at http://www.phys.univ-tours.fr/~mouchet

    A multiwavelength study of the supernova remnant G296.8-0.3

    Full text link
    We report XMM-Newton observations of the Galactic supernova remnant G296.8-0.3, together with complementary radio and infrared data. The spatial and spectral properties of the X-ray emission, detected towards G296.8-0.3, was investigated in order to explore the possible evolutionary scenarios and the physical connexion with its unusual morphology detected at radio frequencies. G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio morphology detected in the interior of the remnant and with the shell-like radio structure observed to the northwest side of the object. The X-ray emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray spectral analysis confirms that the column density is high (NH \sim 0.64 x 10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT \sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low abundance (0.12 Z_sun). The 24 microns observations show shell-like emission correlated with part of the northwest and southeast boundaries of the SNR. In addition a point-like X-ray source is also detected close to the geometrical center of the radio SNR. The object presents some characteristics of the so-called compact central objects (CCO). Its X-ray spectrum is consistent with those found at other CCOs and the value of NH is consistent with that of G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure
    corecore