1,941 research outputs found

    Inverting Chaos: Extracting System Parameters from Experimental Data

    Get PDF
    Given a set of experimental or numerical chaotic data and a set of model differential equations with several parameters, is it possible to determine the numerical values for these parameters using a least-squares approach, and thereby to test the model against the data? We explore this question (a) with simulated data from model equations for the Rossler, Lorenz, and pendulum attractors, and (b) with experimental data produced by a physical chaotic pendulum. For the systems considered in this paper, the least-squares approach provides values of model parameters that agree well with values obtained in other ways, even in the presence of modest amounts of added noise. For experimental data, the “fitted” and experimental attractors are found to have the same correlation dimension and the same positive Lyapunov exponent

    Numerical simulations of the kappa-mechanism with convection

    Full text link
    A strong coupling between convection and pulsations is known to play a major role in the disappearance of unstable modes close to the red edge of the classical Cepheid instability strip. As mean-field models of time-dependent convection rely on weakly-constrained parameters, we tackle this problem by the means of 2-D Direct Numerical Simulations (DNS) of kappa-mechanism with convection. Using a linear stability analysis, we first determine the physical conditions favourable to the kappa-mechanism to occur inside a purely-radiative layer. Both the instability strips and the nonlinear saturation of unstable modes are then confirmed by the corresponding DNS. We next present the new simulations with convection, where a convective zone and the driving region overlap. The coupling between the convective motions and acoustic modes is then addressed by using projections onto an acoustic subspace.Comment: 5 pages, 6 figures, accepted for publication in Astrophysics and Space Science, HELAS workshop (Rome june 2009

    Spin-Orbit Effects on the Shapes of Cross Sections in the 90-Zr(p,p') Reaction at 160 MeV

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Working with and for social enterprises: the role of the volunteer ethnographer

    Get PDF
    Purpose – This paper considers the specific opportunities and challenges of engaging in ethnographic research with organisations in which the researcher participates as a volunteer ethnographer. Design/methodology/approach – The findings in this paper are based on four years of ethnographic research within a social enterprise. Findings – This paper finds that there are significant benefits of the role of the volunteer ethnographer and suggests ways to address some of the challenges. Research limitations/implications – As the field of social enterprise and ethnography grows and researchers engage with methodological discussions about participant observation, the authors suggest that attention should also be paid to the specifics of the role of the volunteer ethnographer. Originality/value – There is growing interest in the use of ethnography in social enterprises. This paper offers unique insight into how this methodology has been applied in the context of self-reliant groups and the importance of the engaging with discussion about the specific role of the volunteer ethnographer

    Clinicopathological features of extranodal lymphomas: Kuwait experience

    Get PDF
    A total of 935 patients with extranodal non-Hodgkin lymphoma (NHL) diagnosed in the period between January 1985 and December 2000 in Kuwait Cancer Center, serving the whole population of Kuwait, were used to describe the clinicopathological and epidemiological features of extranodal lymphomas in Kuwait. Extranodal lymphomas accounted for 45% of all NHL observed during this time. All NHL cases from Kuwait Cancer registry were analyzed and pathologically reclassified using the latest WHO ( 2000) classification. The most common lymphoma observed was diffuse large B-cell lymphoma (58.60%) followed by Burkitt's lymphoma (BL) (3.80%). In the pediatric group, BL comprises more than two thirds of all patients (77.20%). The most common extranodal sites were stomach (19.70%) and skin (17.80%) in the adult group, large intestine (29.80%) and small intestine (19.30%) in the pediatric age group. The majority (73.40%) of adult extranodal lymphomas was in stage IE - IIE and had a very good prognosis. On the contrary, the majority of pediatric extranodal lymphomas were found to be in stage III and IV. Variations in treatment policies ( single agent or combined chemotherapy, radiotherapy, combined modality treatment) adopted and changed during the time period of 16 years of this retrospective study were documented. Copyright (C) 2004 S. Karger AG, Basel

    Stein's Method and Characters of Compact Lie Groups

    Full text link
    Stein's method is used to study the trace of a random element from a compact Lie group or symmetric space. Central limit theorems are proved using very little information: character values on a single element and the decomposition of the square of the trace into irreducible components. This is illustrated for Lie groups of classical type and Dyson's circular ensembles. The approach in this paper will be useful for the study of higher dimensional characters, where normal approximations need not hold.Comment: 22 pages; same results, but more efficient exposition in Section 3.

    Globally Anisotropic High Porosity Silica Aerogels

    Full text link
    We discuss two methods by which high porosity silica aerogels can be engineered to exhibit global anisotropy. First, anisotropy can be introduced with axial strain. In addition, intrinsic anisotropy can result during growth and drying stages and, suitably controlled, it can be correlated with preferential radial shrinkage in cylindrical samples. We have performed small angle X-ray scattering (SAXS) to characterize these two types of anisotropy. We show that global anisotropy originating from either strain or shrinkage leads to optical birefringence and that optical cross-polarization studies are a useful characterization of the uniformity of the imposed global anisotropy.Comment: 18 pages, 14 figures, submitted to Journal of Non-Crystalline Solid

    Cloud microphysical effects of turbulent mixing and entrainment

    Full text link
    Turbulent mixing and entrainment at the boundary of a cloud is studied by means of direct numerical simulations that couple the Eulerian description of the turbulent velocity and water vapor fields with a Lagrangian ensemble of cloud water droplets that can grow and shrink by condensation and evaporation, respectively. The focus is on detailed analysis of the relaxation process of the droplet ensemble during the entrainment of subsaturated air, in particular the dependence on turbulence time scales, droplet number density, initial droplet radius and particle inertia. We find that the droplet evolution during the entrainment process is captured best by a phase relaxation time that is based on the droplet number density with respect to the entire simulation domain and the initial droplet radius. Even under conditions favoring homogeneous mixing, the probability density function of supersaturation at droplet locations exhibits initially strong negative skewness, consistent with droplets near the cloud boundary being suddenly mixed into clear air, but rapidly approaches a narrower, symmetric shape. The droplet size distribution, which is initialized as perfectly monodisperse, broadens and also becomes somewhat negatively skewed. Particle inertia and gravitational settling lead to a more rapid initial evaporation, but ultimately only to slight depletion of both tails of the droplet size distribution. The Reynolds number dependence of the mixing process remained weak over the parameter range studied, most probably due to the fact that the inhomogeneous mixing regime could not be fully accessed when phase relaxation times based on global number density are considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in reduced quality), to appear in Theoretical Computational Fluid Dynamic

    The analysis of facial beauty: an emerging area of research in pattern analysis

    Get PDF
    Much research presented recently supports the idea that the human perception of attractiveness is data-driven and largely irrespective of the perceiver. This suggests using pattern analysis techniques for beauty analysis. Several scientific papers on this subject are appearing in image processing, computer vision and pattern analysis contexts, or use techniques of these areas. In this paper, we will survey the recent studies on automatic analysis of facial beauty, and discuss research lines and practical application

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS
    • …
    corecore