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Inverting chaos: Extracting system parameters from experimental data
G. L. Baker
Bryn Athyn College of the New Church, Bryn Athyn, Pennsylvania 19009

J. P. Gollub
Haverford College, Haverford, Pennsylvania, 19041 and Department of Physics,
University of Pennsylvania, Philadelphia, Pennsylvania 19104

J. A. Blackburn
Department of Physics, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada

~Received 28 May 1996; accepted for publication 7 November 1996!

Given a set of experimental or numerical chaotic data and a set of model differential equations with
several parameters, is it possible to determine the numerical values for these parameters using a
least-squares approach, and thereby to test the model against the data? We explore this question ~a!
with simulated data from model equations for the Rossler, Lorenz, and pendulum attractors, and ~b!
with experimental data produced by a physical chaotic pendulum. For the systems considered in this
paper, the least-squares approach provides values of model parameters that agree well with values
obtained in other ways, even in the presence of modest amounts of added noise. For experimental
data, the ‘‘fitted’’ and experimental attractors are found to have the same correlation dimension and
the same positive Lyapunov exponent. © 1996 American Institute of Physics.
@S1054-1500~96!01204-9#

Model equations are often used to simulate chaotic data.
However, a more challenging task is the fitting of model
equations to real experimental chaotic data. We describe
a simple ‘‘least-squares’’ approach to this ‘‘inverse’’
problem that is robust against modest amounts of data
noise. The technique is successfully applied to data from
an experimental chaotic pendulum.

I. INTRODUCTION

The possibility of devising a dynamical model empiri-
cally from chaotic data has been explored in a variety of
contexts.1 In the most challenging scenario no specific model
is known and one attempts to determine the form of the
ordinary differential equations or maps that govern the be-
havior of a given time series of a single dynamical variable.
See, for example, papers by Brown, Rulkov, and Tracy, and
references contained therein.2 Typically the model is ex-
pressed as a set of first order ODEs, dx/dt5F~x! where x is
a vector in state space. Then F~x! is constructed from linear
combinations of polynomials of the state space variables us-
ing simulated or experimental data.3 Various refinements
have been added to this technique, including the use of sin-
gular value decomposition to facilitate an efficient choice of
polynomials for the ODEs and to help filter noise from the
data.4 Methods have also been developed to reconstruct vec-
tor fields from scalar time series when the model equations
are known.5 In a recent example, model parameters are ob-
tained by synchronization of a parameter-dependent response
system with the original dynamical system.6

In this paper we attempt a less difficult but nevertheless
practical problem of determining parameters for a dynamical
system given a proposed ODE model and an experimental
chaotic time series. The invariants of the ‘‘fitted’’ attractor

can then be compared to those of the ‘‘raw’’ attractor in
order to assess the adequacy of the model. There are two
distinct cases. In the simpler case the model parameters enter
linearly into the ODEs. Typical examples are the dynamical
systems of Lorenz7 and Rossler.8 In more complex situa-
tions, such as the chaotic pendulum, some model parameters
enter linearly, while others enter nonlinearly. We show that a
least-squares approach to finding the parameters works well
in both cases.

While least-squares methods are of course ubiquitous in
data analysis, they appear not to have been previously ap-
plied to the problem of determining parameters of dynamical
systems in this way. Ultimately we hope to apply the method
to test models of spatiotemporal chaos, where the state vari-
ables are functions of both position and time and therefore
the model equations are partial differential equations.

II. THE FITTING METHOD

We consider a typical third-order dynamical system rep-
resented by a set of ODEs

dx1
dt

5F1~x1 ,x2 ,x3 ,a1 ,a2•••am!,

dx2
dt

5F2~x1 ,x2 ,x3 ,a1 ,a2•••am!,¬ ~1!

dx3
dt

5F3~x1 ,x2 ,x3 ,a1 ,a2•••am!,

where$ak% is a set of m adjustable parameters for the model.
The method is to construct a function of the parameters
S(ak) that has a global minimum9 with respect to those pa-
rameters. A common choice is a ‘‘least-squares’’ function
and thus our choice for this dynamical system is
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where the prime indicates differentiation with respect to
time, the first sum is taken over N data points, and the sec-
ond sum is taken over the three dynamical variables. To
obtain a minimum, the derivatives with respect to each pa-
rameter ak are set equal to zero; that is

]S

]ak
50.¬ ~3!

The data set$xi( j) % is assumed given and the derivatives
xi8( j) are calculated using finite-difference derivatives from
the data set. The selected algorithm, which approximates a
derivative from equally spaced data points, is

xi8~ j !5
2xi~ j12 !18xi~ j11 !28xi~ j21 !1xi~ j22 !

12Dt
.

~4!

The resulting error is O(Dt4). When the ‘‘true’’ parameters
are known, the fitted values can be compared with them by
defining an error measure E as follows.

E5
1

n (
k51

n
@ak2ak

0#2

ak
0 ,¬ ~5!

where ak
0 is a member of the ‘‘true’’ parameter set. We also

examine the sensitivity of the fit to noise added to the data.

III. APPLICATION TO SIMULATED DATA

To test the method, it is applied first to numerically gen-
erated time series from the Rossler and Lorenz systems, and,
with modification, from the chaotic pendulum. The Rossler
attractor is generated by the following equations with three
parameters:

x852y2z,

y85x1ay,¬ ~6!

z85b1xz2cz.

For the Rossler system, Eq. ~3! results in the following ex-
pressions for the numerical parameters a, b, and c:

a5
2(xy1(y8y

(y2
,

b5
(z8(z22(xz(z21(z(xz22(z(z8z

n(z22~(z!2
,¬ ~7!

c5
n(xz22n(z8z1(z(z82(z(xz

n(z22~(z!2
.

~All the summations are carried out over all the data points.!
For the numerical simulation we use the parameter set,
a50.15, b50.2, and c510, and generate phase space data
using a fourth-order Runge–Kutta integrator. The fitted re-

sults obtained from the minimization process as given in Eq.
~6! agree within seven decimal places with the original pa-
rameter set. For the Rossler system E>10213 when Dt
50.01, indicating a remarkably close fit, given the roundoff
errors ~or equivalent numerical noise! associated with the
fact that our numerical derivative is O(Dt4), whereas the
numerical integrator is O(Dt5).

We test the robustness of the minimization technique by
adding extra functional terms and parameters to the fitting
model for the Rossler simulation. First we allow the coeffi-
cients that are unity for the simulation to differ from unity in
the fitting model. With this condition application of the mini-
mization technique leads to new equations with these new
parameters as well as the usual parameters, a, b, and c that
replace Eq. ~7!. We find that the additional fitted parameters
are unity to within about one part in 105. In the second test
we add several spurious second degree terms to one of the
differential equations of the ‘‘fitting’’ model, each new term
having its own linear parameter. Again, application of the
minimization technique results in new equations involving
the new parameters and a, b, and c. We find that the new
fitted parameters are all zero to within about one part in 105,
and that a, b, and c are essentially unaffected.

The fitting procedure is also applied to the Lorenz sys-
tem:

x852sx1sy,

y852xz1rx2y ,¬ ~8!

z85xy2bz,

with minimization resulting in the following equations for
the parameters:

s5
(x8y2(x8x

(x222(xy1(y2
,

r5
(xy81(x2z1(xy

(x2
,¬ ~9!

b5
2(zz81(xyz

(z2
.

Again all summations are carried out over all data points. For
the simulation we chooses510, r528, andb52.666 67.
The agreement of the parameters determined by minimiza-
tion with those used in the simulation is again excellent. The
error as defined in Eq. ~5! for the Lorenz system is E>10214

when Dt50.001.
Finally we numerically simulate a chaotic pendulum that

mimics the physical pendulum of Blackburn et al.10 ~In Sec.
V we consider experimental data from such a pendulum.!
This pendulum may be modeled by the equation

I
d2u

dt2
1b

du

dt
1v0

2I sin u5T sin~v f t1f!, ~10!

where I is the moment of inertia, b is a friction parameter,v0
is the natural angular frequency, T is the amplitude of the
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applied forcing torque,vf is the forcing angular frequency,
andf is the initial phase of the forcing. Dividing byI elimi-
nates one parameter:

v81av1b sin u5g sin~dt1f!, ~11!

wherea5b/I , b5v0
2, g5T/I , andd5vf . Of the five param-

eters onlya, b, andg enter as linear coefficients of terms in
the ODE, as do the parameters in the Rossler and Lorenz
systems. The remaining two parameters,d andf, enter non-
linearly as part of the argument of the trigonometric forcing
function. ~A dimensionless version of this equation has only
three parameters11 but use of that model implies knowledge
of both the natural frequency and the initial phase of the
pendulum. Such information would typically be lacking from
experimental data, which only consists of sequences of
anglesui and angular velocitiesvi .! In the simulation we
treat the ‘‘nonlinear’’ parametersd andw as known quanti-
ties and therefore only apply the minimization technique to
the linear parameters. ~In Sec. V, we show how these ‘‘non-
linear’’ parameters can be determined from the data.!

As before we form a least-squares function

S5(
i51

n

@v i82„2av i2b sin u i1g sin~dt1f!…#2,

~12!

where the sum extends over all the points$u i ,v i% of the data
set, and time is incremented by a fixed amount, Dt. The
angular accelerationv i8 is determined for each data point
with the finite-difference approximation defined in Eq. ~4!,

v i85
2v i1218v i1128v i211v i22

12Dt
.¬ ~13!

For the present, we assume knowledge ofd andf, and fol-
low the minimization procedure of setting the partial deriva-
tives of S with respect toa, b, and g equal to zero. This
calculation results in cumbersome but straightforward linear
equations fora, b, and g that may be solved by standard
methods

a( v21b( v sin u2g( v sin~dt1f!

52( v8v,

a( v sin u1b( sin2 u2g( sin u sin~dt1f!

52( v8 sin u, ~14!

a( v sin~dt1f!1b( sin u sin~dt1f!

2g( sin2~dt1f!52( v8 sin~dt1f!.

~As usual, the summations are over all data points.! Figure 1
shows a numerical simulation of the chaotic pendulum with
Dt50.001 s. The parametersd andf are set atd55.9628

rad/s andf51.05 rad. Thesimulationvalues ofa, b, andg
~see the caption of Fig. 1! are chosen so as to coincide with
those used in acquiring the experimental data of Sec. V. Us-
ing the equation set ~14!, the fitted values of the latter three
parameters coincide with those used in the simulation to
eight significant figures. Consequently, the error measure is
E>10215.

For all three dynamical systems we find the error to de-
crease with smaller Dt. However if Dt is less than about
1024 ~for the pendulum! the error increases slightly as nu-
merical error becomes relatively more significant.

IV. THE EFFECT OF ADDITIVE NOISE

In this section we consider the effect of noise on the fit
of the ‘‘linear’’ parameters for the simulated Rossler, Lo-
renz, and pendulum systems. In each case Gaussian noise
with fractional standard deviations is added to the simulated
phase space coordinates to represent the effects of measure-
ment uncertainty. Derivatives are calculated from the noisy
coordinates. Application of the minimization scheme leads to
a power-law dependence of E ons for modest values ofs.
Figure 2 shows a least-squares regression to an equation of
the form

E5AsB ~15!

for numerical pendulum data. While the prefactor A varies
from one system to another and depends on the time step Dt,
the exponent B is relatively system independent as indicated
in Table I. If the integration time step is shortened, E de-
creases. However, this dependence is primarily due to
change in A; B is relatively unchanged as shown in Table I.

If s is more than about 1% of the attractor size, Eq.~15!
still holds but B increases to more than 3 and is somewhat
system dependent. Nevertheless, the minimization process
itself remains fairly robust until the noise approaches an ap-
preciable fraction of the size of the attractor.

FIG. 1. Attractor for the simulated chaotic pendulum. The values of the
parameters used in the simulation area52.12508 s21, b576.1236 s22,
g5117.212 s22, d55.9628 rad s21, andf51.05 rad. The fitted parameters
from the minimization process agreed with these simulation parameters to
within at least eight decimal places.
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V. APPLICATION TO EXPERIMENTAL DATA FROM A
CHAOTIC PENDULUM

In this section we apply the minimization technique to
experimental data from the pendulum of Blackburn et al.10

While the numerical values of the parameters for the experi-
mental data were approximately known to us, we treat the
data as ‘‘blind’’ and only allow ourselves to use our knowl-
edge of the general range these parameters might take for
this pendulum.

The range of typical values for the physical parameters
of the Blackburn pendulum are

2,a,10,

60,b,100 ~ this is a constant for a
given pendulum),

80,g,200,

0,d,12,

0,f,2p.

If d andf are known then the procedure duplicates that
used for the simulated data ~Sec. III! where knowledge of
these parameters was assumed. In practice, these parameters
are determined independently by an iterative process. The

forcing frequencyd is first estimated using a fast Fourier
transform. The power spectrum of the angular velocity has a
strong maximum at 1.0060.05 Hz; this leads to an initial
estimate ofd56.2860.32 rad/s that can then be used to de-
termine a rough estimate off. The fitted value off is not
sensitive to the choice of values fora, b, andg, and there-
fore it is possible to look for a minimum in the ‘‘least-
squares’’ function S @Eq. ~12!# as a function off using
somewhat arbitrary values ofa, b, andg, and the estimate of
d. The minimum in S is shown to be atw51.13 rad in Fig.
3~a!. In the next iteration, these estimates ford andf and the
minimization algorithm are used to determine thea, b, andg
more precisely. With the latter three values in hand the value
of the forcing frequencyd can be refined further by looking
for the minimum of S, as shown in Fig. 3~b!. Then these four
parameters can be used to further refine the fitted phasef.
This series of steps is iterated a few times ~except for the
initial spectral estimate ford! to achieve convergence of the
values of the parameters.

Figure 4 shows the attractor for the chaotic pendulum as
drawn from 4800 experimental data pair sets$u i ,v i% with a
time interval of Dt50.007 s. For this data file the values of
the parameters of the physical pendulum were determined

FIG. 2. Effect of Gaussian additive noise of standard deviations ~expressed
as a fraction of the coordinate range! on the error parameter E for numerical
pendulum data. A least-squares fit of log E vs logs suggests a power-law
relationship. For smalls, the exponent is about 2.

TABLE I. Exponents governing the growth of the error parameter with
standard deviation of added noise for various integration time steps. ~The
time step Dt is dimensioness for the Rossler and Lorenz systems and is
expressed in units of the drive period for the pendulum.!

System¬ Dt B

Rossler¬ 0.01¬ 2.00
0.005¬ 1.98

Lorenz¬ 0.002¬ 2.03
0.001¬ 1.94

Pendulum¬ 0.001¬ 1.98
0.0001¬ 2.11

FIG. 3. ~a! Least-squares sum plotted as a function of the initial phasew for
the experimental pendulum data. The minimum is fairly insensitive to initial
estimates ofa, b, andg, and represents a first and close estimate to the final
result ofw51.05 rad.~b! The least-squares sum as a function of the angular
forcing frequencyd for the experimental pendulum. The minimum has con-
verged to the final resultd55.9628 rad s21.
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experimentally and are given in Table II. ~The initial phase
anglef is not known for this file.!

The fitted values obtained by least-squares fitting are
also given in Table II for comparison. The agreement is gen-
erally good ~though not as good as for the numerical data of
Sec. III!, with the exception ofb. The favorable comparison
suggests that the method described in this paper shows prom-
ise for testing models to account for chaotic data when pa-
rameters are unknown. In general, parameters that appear
nonlinearly must be treated by more sophisticated methods.
One such method is the Levenberg–Marquardt technique.12

With this technique one also minimizes a least-squares type
of function but through an iteration technique, rather than
analytically as in the ‘‘linear’’ parameter cases. However, the
use of the power spectrum and ‘‘manual’’ iteration rendered
the Levenberg–Marquardt method unnecessarily complex
for the case of the chaotic pendulum.

While initial results for the fitted parameters seem prom-
ising and the attractors in Figs. 1 and 4 seem qualitatively
similar, it would be useful to have more quantitative mea-
sures of the similarity of the simulated and experimental at-
tractor. We compare some of these invariants in the next
section.

VI. A COMPARISON OF INVARIANTS

Two attractors can be compared by considering their in-
variant properties such as the attractor dimension and values
of the positive Lyapunov exponent. We compare these in-
variants for the attractors reconstructed from the experimen-
tal data ~Fig. 4! and the numerical simulation ~Fig. 1!. For
the experimental data we utilize the time series of the angular
velocity. A three-dimensional space is sufficient for the em-

bedding. The attractor dimension is calculated with the
Grassberger–Procaccia algorithm.13 Similarly, the positive
Lyapunov exponent is evaluated using the method of Wolf
et al.14 Similar calculations are made for the simulation data
with the phase data of the simulation using fitted parameters
The results are shown in Table III. For the simulation we
were also able to determine the other two Lyapunov expo-
nents, l250 and l3523.760.1. Based on these numbers the
Kaplan–Yorke dimension is found to be about 2.2560.1, a
figure that is consistent with the results in the Table III.

While other methods for characterizing the attractor us-
ing periodic orbits can also be used,15 the evidence at hand is
perhaps sufficient to demonstrate that the model equation
with fitted parameters obtained from the experimental data
provides a good representation of the dynamics.

VII. DISCUSSION AND CONCLUSION

Other parameters may also affect the fitting process.
These include ~a! the number of data points and ~b! the spac-
ing between points that are sampled for use in the fitting
process. For a noise free simulation we find that the good-
ness of fit, as measured by the parameter E, is relatively
independent of both the number of points and the spacing
between sampled points. A good fit can be achieved with less
than ten sampled points from just a single forcing cycle or
from up to 15 forcing cycles of the simulation of the chaotic
pendulum. In contrast, when noise is added to the simulation,
the goodness of fit depends strongly on the number of
sampled points. Figure 5 shows the goodness of fit for two

FIG. 4. Attractor of the experimental pendulum data. The fitted and experi-
mental values for the parameters are compared in Table II. A numerically
simulated attractor using the fitted values is shown in Fig. 1.

TABLE II. Experimental values of the parameters of the pendulum, along
with values obtained from the least-squares fitting procedure.

Parameter¬ Experimental value¬ Fitted ~from experimental data!

a ~rad s21! 2.2460.1¬ 2.12
b ~rad s22! 80.660.1¬ 76.1
g ~rad s22! 12166¬ 117
d ~rad s21! 5.9860.02¬ 5.96
f ~rad! unknown¬ 1.05

TABLE III. Comparison of invariants for the experimental attractor and a
numerically generated attractor using parameters obtained by fitting the ex-
perimental data.

Experimental data
Simulated using fitted

parameters

Dimension¬ 2.260.15¬ 2.160.1
Lyapunov exponent¬ 0.960.1¬ 0.960.1

FIG. 5. Effect on E caused by varying the number of points sampled from
two simulations of a noisy chaotic pendulum. Each simulation provided
16 000 points.
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different noise levels. In each case the simulation was cre-
ated with about 16 000 data points and the fit is made with
various numbers of points sampled at regular intervals from
the simulation. The general trend appears to be an approxi-
mate power-law relationship between E and the number of
points sampled, but scatter precludes a more definitive state-
ment. Nevertheless, it is clear that a high sampling rate is
desirable in the presence of noisy data.

In conclusion, we have presented a method of testing the
applicability of model ODEs to chaotic data. A least-squares
process is used to determine the model parameters, and then
the invariants of the resulting attractor are compared to those
of the data. The method was tested on numerical data and on
experimental data. It is found to be both accurate and fairly
robust with respect to additive noise. The fitting process is
especially straightforward when the system parameters enter
linearly into the model differential equations, as they do in
the case of the Rossler or Lorenz systems.

Whether a similar method will also work for spatiotem-
poral chaos described by partial differential equations re-
mains to be seen. D. P. Vallette and one of the authors ~JPG!
have done preliminary work on a model for a Hopf bifurca-
tion of a parity-invariant cellular pattern in one space dimen-
sion, which was motivated by experiments on the ‘‘rimming
flow’’ of a fluid inside a horizontally rotating cylinder.16 The
model, originally proposed in another context by Daviaud
et al.,17 involves two coupled complex fields: the amplitude
of oscillation A(x,t) and the spatial phasef(x,t) of the un-
derlying cellular pattern. The fitting process is more compli-
cated in this case, since both space and time derivatives must
be computed from the data. The coefficients ~in this case
eight of them! can be quite accurately obtained from the
numerical data.18 On the other hand, the fitting process is
much more sensitive to added noise than in the ODE ex-
amples discussed in this paper, so the possibility of using the
method successfully on experimental spatiotemporal data is
not yet clear.
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