3 research outputs found

    The Effect of Electrolyte Additives on the Performance of Iron Based Anodes for NiFe Cells

    Get PDF
    Aqueous electrolyte formulations for NiFe cells were prepared by using lithium hydroxide and potassium sulfide additives. The incidence of each additive on the overall performance of the NiFe cell was evaluated by cycling our in-house built bismuth sulfide based iron electrodes against commercially available nickel electrodes. In order to explore the composition space relevant to our formulations, a 12 replicates 3 × 4 full factorial experimental design was proposed to efficiently investigate the combined effect of both additives. Our experimental results suggest potassium sulfide enhances the performance of the battery. The role of lithium hydroxide is less clear but the evidence supports that it would increase coulombic efficiency to a lesser degree than potassium sulfide. This article demonstrates that by using a relatively simple manufacturing technique and low cost materials, it is possible to develop cost effective solutions to store large amounts of energy coming from renewables

    Surface response investigation of parameters in the development of FeS based iron electrodes

    Get PDF
    In this article we use a surface response approach to investigate the effect of iron sulphide as well as the compositions of PTFE in the overall columbic efficiency of a NiFe cell battery. Our results demonstrate that iron sulphide favours the process of charge/discharge of a NiFe cell. Our experimental results indicate iron sulphide improves the performance of a NiFe cell, but more research is still needed in order to achieve a large scale utilisation of such cells

    A new synthesis route for sustainable gold copper utilization in direct formic acid fuel cells

    Get PDF
    In the efforts to develop a more sustainable energy mix there is an urgent need to develop new materials for environmentally friendly processes. Developing low metal loading anode catalyst with high electrocatalytic activity for liquid fuel cells remains a great challenge. Polyvinylpyrrolodoneprotected AuCu-C core-shell was fabricated by a facile one-pot modified chemical reduction method. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM) analyses. XRD analysis indicates the preferential orientation of catalytically active (111) planes in AuCu-C core-shell nanoparticles. The inclusion of Cu in the AuCuC catalysts increased catalytic activities, which can be attributed to the increases lattice parameters. Comparative results show that AuCu-C catalyst exhibited much better electrocatalytic activity and stabilization compared to commercial Au nanoparticle on carbon support catalyst. The high performance of AuCu-C catalyst may be attributed to the electronic coupling or synergistic interaction between Cu core structure, and the Au shell makes it a promising for DFAFCs application
    corecore