50 research outputs found

    Strong duality in conic linear programming: facial reduction and extended duals

    Full text link
    The facial reduction algorithm of Borwein and Wolkowicz and the extended dual of Ramana provide a strong dual for the conic linear program (P)sup<c,x>AxKb (P) \sup {<c, x> | Ax \leq_K b} in the absence of any constraint qualification. The facial reduction algorithm solves a sequence of auxiliary optimization problems to obtain such a dual. Ramana's dual is applicable when (P) is a semidefinite program (SDP) and is an explicit SDP itself. Ramana, Tuncel, and Wolkowicz showed that these approaches are closely related; in particular, they proved the correctness of Ramana's dual using certificates from a facial reduction algorithm. Here we give a clear and self-contained exposition of facial reduction, of extended duals, and generalize Ramana's dual: -- we state a simple facial reduction algorithm and prove its correctness; and -- building on this algorithm we construct a family of extended duals when KK is a {\em nice} cone. This class of cones includes the semidefinite cone and other important cones.Comment: A previous version of this paper appeared as "A simple derivation of a facial reduction algorithm and extended dual systems", technical report, Columbia University, 2000, available from http://www.unc.edu/~pataki/papers/fr.pdf Jonfest, a conference in honor of Jonathan Borwein's 60th birthday, 201

    Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level

    Full text link
    We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length. The competition of these two interactions and the introduction of a simple geometrical constraint leads to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean squared base-pair step parameters. For the optimized model parameters we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140pN140{pN}. We observe an overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore