5 research outputs found

    Chemical modeling for pH prediction of acidified musts with gypsum and tartaric acid in warm regions

    Get PDF
    Winemaking of musts acidified with up to 3 g/L of gypsum (CaSO4 2H2O) and tartaric acid, both individually and in combination, as well as a chemical modeling have been carried out to study the behaviour of these compounds as acidifiers. Prior to fermentation gypsum and tartaric acid reduce the pH by 0.12 and 0.17 pH units/g/L, respectively, but while gypsum does not increase the total acidity and reduces buffering power, tartaric acid shows the opposite behaviour. When these compounds were used in combination, the doses of tartaric acid necessary to reach a suitable pH were reduced. Calcium concentrations increase considerably in gypsum-acidified must, although they fell markedly after fermentation over time. Sulfate concentrations also increased, although with doses of 2 g/L they were lower than the maximum permitted level (2.5 g/L). Chemical modeling gave good results and the errors in pH predictions were less than 5% in almost all case

    Development of a chemical model to predict the doses of calcium sulfate and tartaric acid to acidify musts in Sherry area

    No full text
    Calcium sulfate is normally used as a complementary acidifier combined with tartaric acid. The doses corresponding to each one depend on the desired reduction of pH and on the composition of musts. However, considering that there are several interrelated chemical equilibria implied (tartaric acid dissociation, calcium tartrate and potassium bitartrate precipitation, etc.), it is not easy to predict the effect on pH of a mixed tartaric acid and calcium sulfate addition and to determine the necessary doses to reach the final pH required by the winemaker. In a model previously developed by the authors, the prediction of pH after an acidification was properly achieved. On the contrary, in the same model the prediction of the necessary doses of acidifiers to achieve a desired pH have higher errors due to some parameters, as pH and pK, are found as exponential functions in the equations. This work develops and verify the necessary corrections to the models so that appropriate predictions of the doses are obtained. With these corrections, prediction errors of less than 5% were obtained for all doses of acidifiers, confirming the good comprehension of the chemical equilibria involved in this practice

    Development of a chemical model to predict the doses of calcium sulfate and tartaric acid to acidify musts in Sherry area

    No full text
    Calcium sulfate is normally used as a complementary acidifier combined with tartaric acid. The doses corresponding to each one depend on the desired reduction of pH and on the composition of musts. However, considering that there are several interrelated chemical equilibria implied (tartaric acid dissociation, calcium tartrate and potassium bitartrate precipitation, etc.), it is not easy to predict the effect on pH of a mixed tartaric acid and calcium sulfate addition and to determine the necessary doses to reach the final pH required by the winemaker. In a model previously developed by the authors, the prediction of pH after an acidification was properly achieved. On the contrary, in the same model the prediction of the necessary doses of acidifiers to achieve a desired pH have higher errors due to some parameters, as pH and pK, are found as exponential functions in the equations. This work develops and verify the necessary corrections to the models so that appropriate predictions of the doses are obtained. With these corrections, prediction errors of less than 5% were obtained for all doses of acidifiers, confirming the good comprehension of the chemical equilibria involved in this practice

    Electrocatalytic and antifouling properties of CeO2-glassy carbon electrodes

    No full text
    Binary metal oxides with different degrees of covalent/ionic character of the oxygen-metal bond are tested as a partial coating of glassy carbon electrode surfaces. The electrocatalytic and antifouling properties of the resulting bicomponent electrode systems are analysed in view of possible applications in different fields of electrochemistry, such as electroremediation and electroanalysis. Based on the performance with respect to oxidation of ascorbic acid, as to sensitivity, repeatability of the responses, and activation of electrocatalytic oxidation, CeO2 has been preferred. This same electrode system has been further studied in respect to a trickier electrochemical process, namely the anodic oxidation of a chlorophenol derivative, which induces massive passivation of bare electrode surfaces. The effectiveness of the bicomponent electrode system in anodic oxidation of 2,4,6-trichlorophenol has been ascertained, over a wide range of concentrations, by comparison with pure glassy carbon surfaces
    corecore