571 research outputs found

    Diffusion in Stationary Flow from Mesoscopic Non-equilibrium Thermodynamics

    Get PDF
    We analyze the diffusion of a Brownian particle in a fluid under stationary flow. By using the scheme of non-equilibrium thermodynamics in phase space, we obtain the Fokker-Planck equation which is compared with others derived from kinetic theory and projector operator techniques. That equation exhibits violation of the fluctuation dissipation-theorem. By implementing the hydrodynamic regime described by the first moments of the non-equilibrium distribution, we find relaxation equations for the diffusion current and pressure tensor, allowing us to arrive at a complete description of the system in the inertial and diffusion regimes. The simplicity and generality of the method we propose, makes it applicable to more complex situations, often encountered in problems of soft condensed matter, in which not only one but more degrees of freedom are coupled to a non-equilibrium bath.Comment: 10 pages, accepted in Phys. Rev.

    Diffusion in Stationary Flow from Mesoscopic Non-equilibrium Thermodynamics

    Get PDF
    We analyze the diffusion of a Brownian particle in a fluid under stationary flow. By using the scheme of non-equilibrium thermodynamics in phase space, we obtain the Fokker-Planck equation which is compared with others derived from kinetic theory and projector operator techniques. That equation exhibits violation of the fluctuation dissipation-theorem. By implementing the hydrodynamic regime described by the first moments of the non-equilibrium distribution, we find relaxation equations for the diffusion current and pressure tensor, allowing us to arrive at a complete description of the system in the inertial and diffusion regimes. The simplicity and generality of the method we propose, makes it applicable to more complex situations, often encountered in problems of soft condensed matter, in which not only one but more degrees of freedom are coupled to a non-equilibrium bath.Comment: 10 pages, accepted in Phys. Rev.

    A two-species model of a two-dimensional sandpile surface: a case of asymptotic roughening

    Full text link
    We present and analyze a model of an evolving sandpile surface in (2 + 1) dimensions where the dynamics of mobile grains ({\rho}(x, t)) and immobile clusters (h(x, t)) are coupled. Our coupling models the situation where the sandpile is flat on average, so that there is no bias due to gravity. We find anomalous scaling: the expected logarithmic smoothing at short length and time scales gives way to roughening in the asymptotic limit, where novel and non-trivial exponents are found.Comment: 7 Pages, 6 Figures; Granular Matter, 2012 (Online

    Effect of boundaries on the force distributions in granular media

    Get PDF
    The effect of boundaries on the force distributions in granular media is illustrated by simulations of 2D packings of frictionless, Hertzian spheres. To elucidate discrepancies between experimental observations and theoretical predictions, we distinguish between the weight distribution {\cal P} (w) measured in experiments and analyzed in the q-model, and the distribution of interparticle forces P(f). The latter one is robust, while {\cal P}(w) can be obtained once the local packing geometry and P(f) are known. By manipulating the (boundary) geometry, we show that {\cal P}(w) can be varied drastically.Comment: 4 pages, 4 figure

    Clustering transitions in vibro-fluidized magnetized granular materials

    Full text link
    We study the effects of long range interactions on the phases observed in cohesive granular materials. At high vibration amplitudes, a gas of magnetized particles is observed with velocity distributions similar to non-magnetized particles. Below a transition temperature compact clusters are observed to form and coexist with single particles. The cluster growth rate is consistent with a classical nucleation process. However, the temperature of the particles in the clusters is significantly lower than the surrounding gas, indicating a breakdown of equipartition. If the system is quenched to low temperatures, a meta-stable network of connected chains self-assemble due to the anisotropic nature of magnetic interactions between particles.Comment: 4 pages, 5 figure

    Fluctuation-Dissipation relations in Driven Granular Gases

    Full text link
    We study the dynamics of a 2d driven inelastic gas, by means of Direct Simulation Monte Carlo (DSMC) techniques, i.e. under the assumption of Molecular Chaos. Under the effect of a uniform stochastic driving in the form of a white noise plus a friction term, the gas is kept in a non-equilibrium Steady State characterized by fractal density correlations and non-Gaussian distributions of velocities; the mean squared velocity, that is the so-called {\em granular temperature}, is lower than the bath temperature. We observe that a modified form of the Kubo relation, which relates the autocorrelation and the linear response for the dynamics of a system {\em at equilibrium}, still holds for the off-equilibrium, though stationary, dynamics of the systems under investigation. Interestingly, the only needed modification to the equilibrium Kubo relation is the replacement of the equilibrium temperature with an effective temperature, which results equal to the global granular temperature. We present two independent numerical experiment, i.e. two different observables are studied: (a) the staggered density current, whose response to an impulsive shear is proportional to its autocorrelation in the unperturbed system and (b) the response of a tracer to a small constant force, switched on at time twt_w, which is proportional to the mean-square displacement in the unperturbed system. Both measures confirm the validity of Kubo's formula, provided that the granular temperature is used as the proportionality factor between response and autocorrelation, at least for not too large inelasticities.Comment: 11 pages, 7 figures, submitted for publicatio

    Early stage morphology of quench condensed Ag, Pb and Pb/Ag hybrid films

    Full text link
    Scanning Tunneling Microscopy (STM) has been used to study the morphology of Ag, Pb and Pb/Ag bilayer films fabricated by quench condensation of the elements onto cold (T=77K), inert and atomically flat Highly Oriented Pyrolytic Graphite (HOPG) substrates. All films are thinner than 10 nm and show a granular structure that is consistent with earlier studies of QC films. The average lateral diameter, 2rˉ\bar {2r}, of the Ag grains, however, depends on whether the Ag is deposited directly on HOPG (2rˉ\bar {2r} = 13 nm) or on a Pb film consisting of a single layer of Pb grains (2rˉ\bar {2r} = 26.8 nm). In addition, the critical thickness for electrical conduction (dGd_{G}) of Pb/Ag films on inert glass substrates is substantially larger than for pure Ag films. These results are evidence that the structure of the underlying substrate exerts an influence on the size of the grains in QC films. We propose a qualitative explanation for this previously unencountered phenomenon.Comment: 11 pages, 3 figures and one tabl

    The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction

    Full text link
    We study the one-dimensional Bose-Hubbard model using the Density-Matrix Renormalization Group (DMRG).For the cases of on-site interactions and additional nearest-neighbor interactions the phase boundaries of the Mott-insulators and charge density wave phases are determined. We find a direct phase transition between the charge density wave phase and the superfluid phase, and no supersolid or normal phases. In the presence of nearest-neighbor interaction the charge density wave phase is completely surrounded by a region in which the effective interactions in the superfluid phase are repulsive. It is known from Luttinger liquid theory that a single impurity causes the system to be insulating if the effective interactions are repulsive, and that an even bigger region of the superfluid phase is driven into a Bose-glass phase by any finite quenched disorder. We determine the boundaries of both regions in the phase diagram. The ac-conductivity in the superfluid phase in the attractive and the repulsive region is calculated, and a big superfluid stiffness is found in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure

    Avalanche dynamics, surface roughening and self-organized criticality - experiments on a 3 dimensional pile of rice

    Full text link
    We present a two-dimensional system which exhibits features of self-organized criticality. The avalanches which occur on the surface of a pile of rice are found to exhibit finite size scaling in their probability distribution. The critical exponents are τ\tau = 1.21(2) for the avalanche size distribution and DD = 1.99(2) for the cut-off size. Furthermore the geometry of the avalanches is studied leading to a fractal dimension of the active sites of dBd_B = 1.58(2). Using a set of scaling relations, we can calculate the roughness exponent α=DdB\alpha = D - d_B = 0.41(3) and the dynamic exponent z=D(2τ)z = D(2 - \tau) = 1.56(8). This result is compared with that obtained from a power spectrum analysis of the surface roughness, which yields α\alpha = 0.42(3) and zz = 1.5(1) in excellent agreement with those obtained from the scaling relations.Comment: 7 pages, 8 figures, accepted for publication in PR

    On the existence of a Bose Metal at T=0

    Full text link
    This paper aims to justify, at a microscopic level, the existence of a two-dimensional Bose metal, i.e. a metallic phase made out of Cooper pairs at T=0. To this end, we consider the physics of quantum phase fluctuations in (granular) superconductors in the absence of disorder and emphasise the role of two order parameters in the problem, viz. phase order and charge order. We focus on the 2-d Bose Hubbard model in the limit of very large fillings, i.e. a 2-d array of Josephson junctions. We find that the algebra of phase fluctuations is that of the Euclidean group E2E_{2} in this limit, and show that the model is equivalent to two coupled XY models in (2+1)-d, one corresponding to the phase degrees of freedom, and the other the charge degrees of freedom. The Bose metal, then, is the phase in which both these degrees of freedom are disordered(as a result of quantum frustration). We analyse the model in terms of its topological excitations and suggest that there is a strong indication that this state represents a surface of critical points, akin to the gapless spin liquid states. We find a remarkable consistency of this scenario with certain low-T_c thin film experiments.Comment: 16 pages, 2 figure
    corecore