67 research outputs found

    CGMP signalling in plants:From enigma to main stream

    Get PDF
    All living organisms communicate with their environment, and part of this dialogue is mediated by secondary messengers such as cyclic guanosine mono phosphate (cGMP). In plants, most of the specific components that allow production and breakdown of cGMP have now been identified apart from cGMP dependent phosphodiesterases, enzymes responsible for cGMP catabolism. Irrespectively, the role of cGMP in plant signal transductions is now firmly established with involvement of this nucleotide in development, stress response, ion homeostasis and hormone function. Within these areas, several consistent themes where cGMP may be particularly relevant are slowly emerging: these include regulation of cation fluxes, for example via cyclic nucleotide gated channels and in stomatal functioning. Many details of signalling pathways that incorporate cGMP remain to be unveiled. These include downstream targets other than a small number of ion channels, in particular cGMP dependent kinases. Improved genomics tools may help in this respect, especially since many proteins involved in cGMP signalling appear to have multiple and often overlapping functional domains which hampers identification on the basis of simple homology searches. Another open question regards the topographical distribution of cGMP signals are they cell limited? Does long distance cGMP signalling occur and if so, by what mechanisms? The advent of non-disruptive fluorescent reporters with high spatial and temporal resolution will provide a tool to accelerate progress in all these areas. Automation can facilitate large scale screens of mutants or the action of effectors that impact on cGMP signalling. </jats:p

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Rice Two-Pore K+ Channels Are Expressed in Different Types of Vacuoles[W]

    No full text
    The two members of the two-pore potassium (TPK) family in rice have highly similar amino acid sequences and electrophysiological properties and yet are targeted to distinct cellular locations. Whereas TPKa localizes mainly to the tonoplast of the lytic vacuole, TPKb occurs in protein storage vacuoles. This study identifies the domains that are critical for their differential targeting

    Deformable templates for tracking and analysis of intravascular ultrasound sequences

    Get PDF
    Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints)

    Membrane localization diversity of TPK channels and their physiological role

    No full text
    Potassium (K) is one of the major nutrients that is essential for plant growth and development. The majority of cellular K+ resides in the vacuole and tonoplast K+ channels of the TPK (Two Pore K) family are main players in cellular K+ homeostasis. All TPK channels were previously reported to be expressed in the tonoplast of the large central lytic vacuole (LV) except for one isoform in Arabidopsis that resides in the plasma membrane. However, plant cells often contain more than one type of vacuole that coexist in the same cell. We recently showed that two TPK isoforms (OsTPKa and OsTPKb) from Oryza sativa localize to different vacuoles with OsTPKa predominantly found in the LV tonoplast and OsTPKb primarily in smaller compartments that resemble small vacuoles (SVs). Our study further revealed that it is the C-terminal domain that determines differential targeting of OsTPKa and OsTPKb. Three C-terminal amino acids were particularly relevant for targeting TPKs to their respective endomembranes. In this addendum we further evaluate how the different localization of TPKa and TPKb impact on their physiological role and how TPKs provide a potential tool to study the physiology of different types of vacuole
    corecore