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Abstract

Deformable Template models are first applied to track the inner wall
of coronary arteries in intravascular ultrasound sequences, mainly in
the assistance to angioplasty surgery. A circular template is used for
initializing an elliptical deformable model to track wall deformation
when inflating a balloon placed at the tip of the catheter. We define a
new energy function for driving the behavior of the template and we test
its robustness both in real and synthetic images. Finally we introduce
a framework for learning and recognizing spatio-temporal geometric
constraints based on Principal Component Analysis (eigenconstraints).

1 Introduction

1.1 Intravascular Ultrasound Sequences

Intravascular Ultrasound is a recent technique which provides a source of
high quality medical imaginery for precisely quantifying arterial obstruction
and in consequence for the assessment of coronary interventions (bypass,
balloon angioplasty, stent deployment or atherectomy) [27], [9]. A catheter
with a transducer mounted on its tip is placed inside the artery and rotated
to generate, by emitting pulses of ultrasound and receiving echoes, planar
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cross-sections corresponding to the traversed arterial structure. In the out-
put obtained (see Fig. 1) the center of the catheter is taken as origin of the
new reference system and the image typically reveals three types of echo:
vessel lumen (dark echoes), plaque (soft grey echoes) and vessel wall (white
echoes). The analysis of the type of plaque helps specialists to choose the
best interventional modality.

Figure 1: Slice obtained by intravascular ultrasound

1.2 Previous Approaches for Representation and Analysis

The problem of automatically obtaining suitable representations of the in-
travascular structure from two dimensional slices has been adressed in the
past. These models must be suitable for extracting and analyzing quanti-
tative features, in order to help both in diagnosis and intervention control.
The most significant approaches developed to date are the following:

1. Rendering Stacked Slices [25], [17], [13], [23].

(a) Static geometry and non-curved vascular structure are assumed.
Visualizations are based on slice stacking. The problem of this
approach is that the obtained geometry is usually unrealistic and
distorted.

(b) Extended approaches [19] introduce curved, but still static, struc-
ture.

2. Introducing Snakes: [12]

(a) Spatio-temporal structure extraction by application of deformable
models is addressed in the context of angiography (tracking of the
2D projections of the lumen).

(b) Deformable models allow to obtain the actual dynamic geometry.

3. Integration with Angiography: [18]
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(a) First step consists of obtaining, by variational stereo-matching
based on snakes, the three-dimensional angiographic structure.

(b) This information is integrated, using the spatio-temporal syn-
chronization of the transducer and the angiography, with the
transversal slices for generating the visualization by volume ren-
dering based on interpolation.

(c) In this sense slice positioning is guided by landmarks correspond-
ing to branching points located at the arterial tree.

In our opinion future approaches must address the problem of analyze the
internal structure of the slices in order to detect plaque (texture analysis)
or to improve clinical procedures (e.g. angioplasty).

1.3 The Proposed Approach: Outline of the Paper

The approach presented in this paper is based on Deformable Templates
[1], [10], [11], [15], [6], [28], [29], [30], [31], [20], [26]. In the context of
intravascular ultrasound imaging we introduce improvements mainly in two
directions:

1. Wall Tracking: given the morphology of the vessel walls (typically cir-
cular or elliptical), the problem of wall tracking can be addressed by
using deformable templates. Wall tracking is interesting in, at least,
two cases:

(a) Locating plaque: once the wall is identified the zone where the
plaque can be located is bounded . In consequence a texture
driven local search, from the wall to the center of the vessel, can
extract the actual boundary of the plaque in order to obtain the
thickness of the lession. Tracking experiments with circular tem-
plates are presented in Section 2.2.

(b) Control of medical procedures: In this context one of the medical
procedures in which the use of non-rigid tracking can introduce
some level of automation is the Coronary Angioplasty. Such pro-
cedure consists of placing a small baloon at the catheter end in
order to dilate the plaque that obstructs the artery (see Figs. 2, 3
and 4). Balloon inflating induces a pressure that compresses and
slashes the plaque and reduces or eliminates the arterial steno-
sis. In Section 2.3. we present several tracking experiments in
angioplasty defining and using elliptical templates.

2. Sequence Analysis: given the spatio-temporal geometrical information
derived from the application of the templates to the slices, it can be
learnt and used for recognizing correct evolution paths in the angio-
plasty process (e.g. uniform expansion, unitary excentricity, etc.). We
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propose the use of Principal Component Analysis in the temporal di-
mension for defining compact spatio-temporal constraints. In Section 3
we introduce this approach presenting several synthetic experiments.

Figure 2: Introduction
of the catheter with a
balloon.

Figure 3: Balloon
deployment to com-
press and fracture the
plaque.

Figure 4: Plaque ex-
tinction, stenosis clear-
ing and flow normaliza-
tion.

2 Tracking Based on Deformable Templates

A single deformable template model is defined by a geometrical structure
gD(Θ) (circle, parabola, ellipse, segment, etc.), where Θ is a vector of rele-
vant parameters and D is the spatial domain. This structure reacts to an
specific image model or potential field Ψ(u,v). Reaction behavior (dynam-
ics) is established by an energy function E(Θ). In this way optimal position-
ing of the structure over the potential is characterized by a minimum of
E(Θ) which is usually found by gradient descent. In this section we present
the application of two types of templates (circular and elliptical) to track
the inner wall of the artery.

2.1 Image Model: Potential Fields

As we need to bound the zone where the plaque can be we apply first grey
thresholding. This is followed by a morphological closing which clears local
structures that can introduce distortions, and, finally, we apply a Gaussian
filter to smooth the geometry of the gradient. The result is showed in Fig. 5
whereas Fig. 6 contains the filtered gradient. Both images will be used as
potential fields in our experiments.

This procedure gives us an ah-hoc basic potential field which contains
the vessel wall. More robust fields can be obtained by applying a region
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Figure 5: Binary potential fields
after filtering.

Figure 6: Gradient potential af-
ter Gaussian filtering.

Table 1: Circular Template Equations

Global Energy

E(x,y, r) ∫ ∫
DEshape(u,v, r)∗Eimage(x +u,y + v)dudv +Enoise(r)

Enoise(r) Eimage(x,y) Eshape(x,y, r)
−αara I(x,y) (r −

√
x2 +y2)

CT Dynamics

Center Dynamics




dx
dt
dy
dt


 = −




∂E
∂x
∂E
∂y


 = ∫Γ∩D(r −

√
u2 + v2)(−∇I)ds

Radius Dynamics dr
dt = − ∂E∂r = −

∫ ∫
D I(x +u,y + v)dudv +αra−1

based strategy [14], [24]. Moreover speckle noise or high correlated noise,
due to the acquisition process and caused by tissue microstructures, can be
modeled by a Rayleigh distribution [5].

2.2 Circular Templates: Wall Tracking and Initial Position

Circular Templates (CT) were first proposed in [32] as a part of a method to
find the skeleton of a binary shape1 with certain levels of noise tolerance.
Let be (x,y) the center position, r the radius and D the circular domain
bounded by the CT. We consider a binary image as potential: the function
I(x,y) returns 1 if the pixel is inside the template domain, and otherwise
returns 0. The dynamic of the CT is defined by the function E(x,y, r), and
its optimum is obtained by gradient descent. The original equations are
showed at Table 1 and explained below:

1This model was originally named The Free-Travelling Circle.
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Figure 7: CT: Noise (A) and gradient forces

1. Dynamics of the center: Let be Γ the shape contour and ∇I the gra-
dient. Then −∇I can be considered as a force of opposite direction
which is weighted by r−√u2 + v2. The CT motion will converge when
all the forces inside the CT are balanced (See Fig. 7).

2. Dynamics of the radius: The first term is the white pixels area inside
the CT domain (See area A in Fig. 7) and represents a force which
makes the radius decrease. The second term is the expansion force of
the CT. The CT will converge when the area A will be equal to αra−1.
The α and a parameters determine the tolerated noise level. Tipical
values used are: 1 < a < 3 and 0 < α < 20.

We have applied this basic model to locate an estimate of the inner wall.
The spatio-temporal structure obtained is showed, by rendering and inter-
polation, in Fig. 8. Arterial tightness can be observed at the bottom example.
As we will see later, this approach is also useful to initialize other templates
(like elliptical ones).

2.3 Elliptical Templates: Tracking in Angioplasty

As we said in the first section the shape geometry induced by inflating the
balloon can be elliptical. In consequence we have extended the circular
model to an elliptical one. Elliptical template formulation is given by the
following terms (see Fig. 9):

1. Geometrical structure, potential and global energy: template ellipti-
cal structure is formulated by gD(Θ) = (xc,yc, a, b, ~Vref ) where: D
is the elliptical domain, centered at (xc,yc), with major and minor
axes a,b and with a reference vector ~Vref = (cosθ, sinθ) being θ the
orientation of the secondary axe (b). Using the potentials previously
extracted, we derive the global energy:

6



Figure 8: Rendered sequeces of inner radius.

E(xc,yc, a, b, ~Vref ) = Eshape(xc,yc, a, b)+Erot(xc,yc, ~Vref )+Enoise(a, b)
(1)

with the following terms:

(a) Shape energy: position, curvature and scale parameters are driven
by:

Eshape(xc,yc, a, b) =
∫ ∫

D
(1−(u

2

a2
+ v

2

b2
)) I(xc +u,yc +v)dudv

(2)

(b) Rotation energy: reference vector adapting behavior is based on:

Erot(xc,yc, ~Vref ) = (N (~Vref ) ·N (~∇I(p1)))2 (3)

where N gives the unitary vector (in the direction of the argu-
ment), · represents the scalar product and p1 is the first point of
the positive semi-axe of a with nonzero gradient, that is:

p1 = (xc+i cos(θ−π
2
),yc+i sin(θ−π

2
)) | 0 < i < a, ~∇I(p1) ≠ 0

(4)
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Figure 9: Elliptical Deformable Template.

(c) Noise Energy: the noise term allows to specify a different noise
tolerance for each axe, and it is given by

Enoise(a, b) = −αaλa a
λa − αb

λb
bλb (5)

2. Dynamics of the ellipse: the parameters that minimizeE(xc,yc, a, b, ~Vref )
are obtained by gradient descent:

(a) Dynamics of the center : similarly to the circular template, the dy-
namics of the center is given by the contact between the elliptical
primitive and the gradient of the shape (vascular boundary):




∂xc
∂t
∂yc
∂t


 = −




∂E
∂xc
∂E
∂yc


 =

∫
D
(1− (u

2

a2
+ v2

b2
))(−~∇I)ds−

2(N (~Vref ) ·N (~∇I(p1)))(N (~Vref )N (~∇2I(p1))) (6)

The effect of the gradient is used to center the primitive (first
term) and the point p1 (second term). The second term has a
secondary effect while the reference vector is not orthogonal to
the gradient in p1 or to its variation around this point (Laplacian),
which is the equilibrium condition.

(b) Rotation Dynamics: since the primitive could not be correctly ori-
ented, a term to induce a rotation, when needed, must be intro-
duced. For that reason we use the square of the dot product
between the reference vector and the gradient vector at p1. This
gives us an estimate of the deviation with respect to the ideal
orientation (orthogonal):
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∂~Vrefx
∂t

∂ ~Vrefy
∂t


 = −




∂E
∂~Vrefx
∂E

∂~Vrefy


 = −2(N (~Vref )·N (~∇I(p1)))N (~∇I(p1)))

(7)

(c) Dynamics of the axes: the variation of the axes follows the same
formulation that the circular model, and in each case is consid-
ered the noise factor associated to each axe:

da
dt

= −∂E
∂a

= −
∫ ∫

D
2
u2

a3
I(xc + u,yc + v)dudv + αaaλa−1

(8)

db
dt

= −∂E
∂b

= −
∫ ∫

D
2
v2

b3
I(xc +u,yc +v)dudv +αbbλb−1 (9)

the convergence will arrive when both noise levels be balanced by
the number of included pixels.

Two examples of adaptation of the template are shown in Fig. 10. The left
ellipse is one with a no elliptical shape. We fix the noise levels parameters
in: αa = 15, αb = 15, λa = 1 and λb = 1. In the first case the adaptation
deficience is due to the discrete nature of the rotation and to the no-elliptical
shape, and in the second it is only due to discretitation errors.

Figure 10: Examples of Elliptical Templates.

We have found that, when using elliptical templates in a noisy environ-
ment, circular initialization improves the final result: the circular template
is expanded in order to find the elliptical border and its radius and center
position are used as the initial parameters for the elliptical template. This
effect is showed in Fig. 11 and in Fig. 12. In Fig. 11, we present two se-
quences of experiments with increasing noise rate: in the upper sequence
we have used elliptical initialization whereas at the bottom one we have
used circles. The final results are better in the second case as we can cor-
roborate in Fig. 12 where we represent, for each initialization policy, the
Euclidean distance between the result and the actual shape for different
levels of noise.
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Figure 11: Analysis of noise tolerance. Effect of circle vs. elliptical initial-
ization.

Final results of the aplication of the proposed model to an inflating se-
quence are shown in Fig. 13 where we can see some evolution steps. We have
empirical selected the noise levels parameters as follows αa = 4, αb = 5,
λa = 2 and λb = 2.

3 Spatio-Temporal Analysis: EigenConstraints

3.1 Motivation and Principal Component Analysis

Tracking of angioplasty based on deformable templates allows us to recover
spatio-temporal data which can be very useful for experts (wall thickness,
blood flow, etc.). In the Fig. 14 we can see the evolution of the inner radius.
We can distinguish three stages. In the first one the radius decreases to
reach a valley (frame number 11). This implies the existence of a lession.
In the second stage (frames 14 to 30) we apply the balloon and the radius
increases. Finally (third stage) at frame 30 we recover the normal behavior
(oscillating peaks are related to cardiac pulse).

This fact motivates the development of representations for analyzing the
evolution of the geometry along the sequence. In this sense we can design
compact (low-dimensional) geometric constraints over interesting features
or parameters obtained in the tracking process in order to define evolu-
tion cathegories. We address this question by using Principal Component
Analysis (PCA) [8]. This method has been successfully applied to design
deformable models [3], [4], [2] to learn and matching image models [21] and
sequences [16], [22] and, finally, to represent primitive shapes [32].
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Figure 12: Initialisation behavior vs. increasing Gaussian noise levels.

3.2 Designing EigenConstraints

Given an spatio-temporal geometrical structure Θ(t) obtained by tracking
we can define a set of constraints C(t) which express evolving geometric
relations (e.g. relative curvature between several parameters of Θ(t)). The
main purpose of using PCA in this context is to obtain a low-dimensional
representation of the evolution of each relation over time.

As an illustrative example we have established three ideal constraints
that must be satisfied by a correct inflating process: ra/r0(t), rb/r0(t),
ra/rb(t) (see Fig. 15). The two first relations express the local averaged
evolution of each axe (local average is applied to filter cardiac pulses) nor-
malized by the initial inner radius r0, whereas the third express the rela-
tive evolution of the axes (i.e. an estimate of the excentricity) also locally
averaged. Then it is preferred moderated (medium slope) and uniform (ex-
centricity near the unit) balloon inflating. We have learnt these constraints
and have expressed them with a reduced number of parameters (those cor-
responding to greater eigenvalues associated to the covariance matrix of
the training set) to capture 90% of the variability. In Fig. 16 we represent
acceptance results (by applying Mahalanobis distance [7]) for ra(t)/r0 given
a prototype set of lines generated by varying their slope.

4 Conclusions and Future Developments

This paper first introduces the use of deformable templates for tracking
the inner wall of vessels in intravascular ultrasound sequences. Tracking is
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applied in two cases: a simple circular template is used to recover the inner
wall along the transducer path and is also used for initializating an ellipti-
cal template for extracting wall shape evolution when inflating the balloon.
In both cases exhaustive experiments where performed in order to find the
ideal parameters of noise and to test the adequacy of each template to the
problem. Finally a new framework based on eigenconstraints is presented
for evolution recognition. The purpose of the later experiments is to show
its potential application to the geometric analysis of the sequences. Future
work includes: automatic learning of noise parameters, the improvement of
the quality of the fields (e.g. solving boundary discontinuities) and, finally,
extensive application of PCA to extract constraints to accurately define clin-
ical quality criteria of the angioplasty process.
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Figure 13: Tracking results in angioplasty.
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Figure 14: Evolution path of the inner radius.

Figure 15: Ideal constraints for recognition.

Figure 16: Experimental results for the ra/r0(t) constraint. Prototype recog-
nition.
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