233 research outputs found
Vertices and the CJT Effective Potential
The Cornwall-Jackiw-Tomboulis effective potential is modified to include a
functional dependence on the fermion-gauge particle vertex, and applied to a
quark confining model of chiral symmetry breaking.Comment: 10 pages (latex), PURD-TH-93-1
Relativistic center-vortex dynamics of a confining area law
We offer a physicists' proof that center-vortex theory requires the area in
the Wilson-loop area law to involve an extremal area. Area-law dynamics is
determined by integrating over Wilson loops only, not over surface fluctuations
for a fixed loop. Fluctuations leading to to perimeter-law corrections come
from loop fluctuations as well as integration over finite -thickness
center-vortex collective coordinates. In d=3 (or d=2+1) we exploit a contour
form of the extremal area in isothermal which is similar to d=2 (or d=1+1) QCD
in many respects, except that there are both quartic and quadratic terms in the
action. One major result is that at large angular momentum \ell in d=3+1 the
center-vortex extremal-area picture yields a linear Regge trajectory with Regge
slope--string tension product \alpha'(0)K_F of 1/(2\pi), which is the canonical
Veneziano/string value. In a curious effect traceable to retardation, the quark
kinetic terms in the action vanish relative to area-law terms in the large-\ell
limit, in which light-quark masses \sim K_F^{1/2} are negligible. This
corresponds to string-theoretic expectations, even though we emphasize that the
extremal-area law is not a string theory quantum-mechanically. We show how some
quantum trajectory fluctuations as well as non-leading classical terms for
finite mass yield corrections scaling with \ell^{-1/2}. We compare to old
semiclassical calculations of relativistic q\bar{q} bound states at large \ell,
which also yield asymptotically-linear Regge trajectories, finding agreement
with a naive string picture (classically, not quantum-mechanically) and
disagreement with an effective-propagator model. We show that contour forms of
the area law can be expressed in terms of Abelian gauge potentials, and relate
this to old work of Comtet.Comment: 20 pages RevTeX4 with 3 .eps figure
On topological charge carried by nexuses and center vortices
In this paper we further explore the question of topological charge in the
center vortex-nexus picture of gauge theories. Generally, this charge is
locally fractionalized in units of 1/N for gauge group SU(N), but globally
quantized in integral units. We show explicitly that in d=4 global topological
charge is a linkage number of the closed two-surface of a center vortex with a
nexus world line, and relate this linkage to the Hopf fibration, with homotopy
; this homotopy insures integrality of the global
topological charge. We show that a standard nexus form used earlier, when
linked to a center vortex, gives rise naturally to a homotopy , a homotopy usually associated with 't Hooft-Polyakov monopoles and similar
objects which exist by virtue of the presence of an adjoint scalar field which
gives rise to spontaneous symmetry breaking. We show that certain integrals
related to monopole or topological charge in gauge theories with adjoint
scalars also appear in the center vortex-nexus picture, but with a different
physical interpretation. We find a new type of nexus which can carry
topological charge by linking to vortices or carry d=3 Chern-Simons number
without center vortices present; the Chern-Simons number is connected with
twisting and writhing of field lines, as the author had suggested earlier. In
general, no topological charge in d=4 arises from these specific static
configurations, since the charge is the difference of two (equal) Chern-Simons
number, but it can arise through dynamic reconnection processes. We complete
earlier vortex-nexus work to show explicitly how to express globally-integral
topological charge as composed of essentially independent units of charge 1/N.Comment: Revtex4; 3 .eps figures; 18 page
Infrared behaviour of the pressure in g\phi^3 theory in 6 dimensions
In an earlier paper Almeida and Frenkel considered the calculation of the
pressure in g\phi^3 theory in 6 dimensions via the Schwinger--Dyson equation.
They found, under certain approximations, that a finite result ensues in the
infrared limit. We find this conclusion to remain true with certain variations
of these approximations, suggesting the finiteness of the result to be fairly
robust.Comment: 6 pages, 4 figures, uses revtex
On a class of embeddings of massive Yang-Mills theory
A power-counting renormalizable model into which massive Yang-Mills theory is
embedded is analyzed. The model is invariant under a nilpotent BRST
differential s. The physical observables of the embedding theory, defined by
the cohomology classes of s in the Faddeev-Popov neutral sector, are given by
local gauge-invariant quantities constructed only from the field strength and
its covariant derivatives.Comment: LATEX, 34 pages. One reference added. Version published in the
journa
Renormalized Wick expansion for a modified PQCD
The renormalization scheme for the Wick expansion of a modified version of
the perturbative QCD introduced in previous works is discussed. Massless QCD is
considered, by implementing the usual multiplicative scaling of the gluon and
quark wave functions and vertices. However, also massive quark and gluon
counter-terms are allowed in this mass less theory since the condensates are
expected to generate masses. A natural set of expansion parameters of the
physical quantities is introduced: the coupling itself and to masses and
associated to quarks and gluons respectively. This procedure allows to
implement a dimensional transmutation effect through these new mass scales. A
general expression for the new generating functional in terms of the mass
parameters and is obtained in terms of integrals over arbitrary but
constant gluon or quark fields in each case. Further, the one loop potential,
is evaluated in more detail in the case when only the quark condensate is
retained. This lowest order result again indicates the dynamical generation of
quark condensates in the vacuum.Comment: 13 pages, one figur
The Svetitsky-Yaffe conjecture for the plaquette operator
According to the Svetitsky-Yaffe conjecture, a (d+1)-dimensional pure gauge
theory undergoing a continuous deconfinement transition is in the same
universality class as a d-dimensional statistical model with order parameter
taking values in the center of the gauge group. We show that the plaquette
operator of the gauge theory is mapped into the energy operator of the
statistical model. For d=2, this identification allows us to use conformal
field theory techniques to evaluate exactly the correlation functions of the
plaquette operator at the critical point. In particular, we can evaluate
exactly the plaquette expectation value in presence of static sources, which
gives some new insight in the structure of the color flux tube in mesons and
baryons.Comment: 8 pages, LaTeX file + three .eps figure
Cancellation of the Chiral Anomaly in a Model with Spontaneous Symmetry Breaking
A perturbatively renormalized Abelian Higgs-Kibble model with a chirally
coupled fermion is considered. The Slavnov identity is fulfilled to all orders
of perturbation theory, which is crucial for renormalizability in models with
vector bosons. BRS invariance, i.e. the validity of the identity, forces the
chiral anomaly to be cancelled by Wess-Zumino counterterms. This procedure
preserves the renormalizability in the one-loop approximation but it violates
the Froissart bounds for partial wave amplitudes above some energy and destroys
renormalizability from the second order in h bar onwards due to the
counterterms. (The paper has 3 figs. in postscript which are not included; send
request to the author's e-mailbox with subject: figures . The author is willing
to mail hard copies of the paper.)Comment: 13 pages, plain TeX, SI 92-1
Limit on the fermion masses in technicolor models
Recently it has been pointed out that no limits can be put on the scale of
fermion mass generation in technicolor models, because the relation
between the fermion masses and depends on the dimensionality of the
interaction responsible for generating the fermion mass. Depending on this
dimensionality it may happens that does not depend on at all. We show
that exactly in this case may reach its largest value, which is almost
saturated by the top quark mass. We make few comments on the question of how
large can be a dynamically generated fermion mass.Comment: 5 pages, 1 figure, RevTeX
Analytical results for the confinement mechanism in QCD_3
We present analytical methods for investigating the interaction of two heavy
quarks in QCD_3 using the effective action approach. Our findings result in
explicit expressions for the static potentials in QCD_3 for long and short
distances. With regard to confinement, our conclusion reflects many features
found in the more realistic world of QCD_4.Comment: 24 pages, uses REVTe
- …
