33 research outputs found

    Graphical models for interactive POMDPs: representations and solutions

    Get PDF
    We develop new graphical representations for the problem of sequential decision making in partially observable multiagent environments, as formalized by interactive partially observable Markov decision processes (I-POMDPs). The graphical models called interactive inf uence diagrams (I-IDs) and their dynamic counterparts, interactive dynamic inf uence diagrams (I-DIDs), seek to explicitly model the structure that is often present in real-world problems by decomposing the situation into chance and decision variables, and the dependencies between the variables. I-DIDs generalize DIDs, which may be viewed as graphical representations of POMDPs, to multiagent settings in the same way that IPOMDPs generalize POMDPs. I-DIDs may be used to compute the policy of an agent given its belief as the agent acts and observes in a setting that is populated by other interacting agents. Using several examples, we show how I-IDs and I-DIDs may be applied and demonstrate their usefulness. We also show how the models may be solved using the standard algorithms that are applicable to DIDs. Solving I-DIDs exactly involves knowing the solutions of possible models of the other agents. The space of models grows exponentially with the number of time steps. We present a method of solving I-DIDs approximately by limiting the number of other agents’ candidate models at each time step to a constant. We do this by clustering models that are likely to be behaviorally equivalent and selecting a representative set from the clusters. We discuss the error bound of the approximation technique and demonstrate its empirical performance

    Five-stage Procedure for the Evaluation of Simulation Models through Statistical Techniques

    No full text

    Regression Metamodels and Design of Experiments

    No full text

    Estimating buffer overflows in three stages using cross-entropy

    Get PDF
    In this paper we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level; finally, the tilting parameter just found is used to estimate the overflow probability of interest. We recognize three distinct properties of the method which together explain why the method works well; we conjecture that they hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm

    Response surface methodology revisited

    No full text
    corecore