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ABSTRACT 

In this paper we propose a fast adaptive Importance Sam- 
pling method for the efficient simulation of buffer overffow 
probabilities in queueing networks. The method comprises 
three stages. First we estimate the minimum Cross-Entropy 
tilting parameter for a small buffer level; next, we use this 
as a starting value for the estimation of the optimal tilting 
parameter for the actual (large) buffer level; finally, the 
tilting parameter just found is used to estimate the overflow 
probability of interest. We recognize three distinct proper- 
ties of the method which together explain why the method 
works well; we conjecture that they hold for quite general 
queueing networks. Numerical results support this conjec- 
ture and demonstrate the high efficiency of the proposed 
algorithm. 

1 INTRODUCTION 

The performance of computer and communications sys- 
tems is often characterized by the probability of certain 
rare events. For example, the cell loss probability in 
asynchronous transfer mode (ATM) switches should typi- 
cally be less than see e.g., L‘Ecuyer and Champoux 
(2001). The performance of such systems is frequently stud- 
ied through simulation. However, estimation of rare event 
probabilities with naive Monte Carlo techniques requires a 
prohibitively large number of trials in most interesting cases. 
One way to deal with this problem is to use Importance 
Sampling (IS). The main idea of IS, when applied to rare 
events, is to make their Occurrence more frequent, or in 

other words, to “speed up” the simulation. Technically, IS 
aims to select a probability distribution (change of measure) 
that minimizes the variance of the IS estimator. Finding 
the right change of measure is often described by a large 
deviation result. This type of analysis is feasible only for 
relatively simple models, see also Asmussen and Rubinstein 
(1995) and Heidelberger (1995) for surveys. 

In Lieber, Rubinstein, and Elmakis (1997) and Ru- 
binstein (1997) an adaptive IS algorithm for rare events 
simulation was proposed in which the change of measure is 
estimated by minimizing the sample variance of the IS esti- 
mator. In de Boer (2000) and Lieber and Rubinstein (1998) 
this IS algorithm was further modified to minimize the 
Kullback-Leibler distance, or Cross-Entropy, with respect 
to the tilted parameter, instead of minimizing the variance. 
In de Boer (2000), several efficient heuristics based on state- 
dependent exponential changes of measure are presented to 
overcome the difficulties when the state-independent CE 
method fails. An attractive feature of the CE method is that 
it can be readily modified for solving NP-hard combinato- 
rial optimization problems (see Alon, Raviv, and Rubinstein 
(2001), Rubinstein (1999), Rubinstein (2001b), Rubinstein 
(2002), Rubinstein (2001a)). 

In this paper we investigate an adaptive IS algorithm for 
the efficient simulation of buffer overflow probabilities in 
queueing systems. The difference between this algorithm 
and existing adaptive algorithms (de Boer, Nicola, and 
Rubinstein 2000, Lieber, Rubinstein, and Elmakis 1997, 
Rubinstein 1997) is that the latter ones always required 
many stages, where the present one comprises only three 
stages: First, in the pilot stage we estimate the minimum CE 
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tilting parameter for a small buffer level; next, we use this 
as a starting value for the estimation of the optimal tilting 
parameter for the actual (large) buffer level; finally, the 
tilting parameter just found is used to estimate the overflow 
probability of interest. 

The reason why the three-stage approach works well 
(for arbitrary overflow levels) is that under the initial change 
of measure the buffer process is unstable, and moreover, that 
this change of measure is "close" to the change of measure 
for the second stage. In other words, the initial tilting 
vector is in some sense a "good" tilting vector. We have 
investigated these two properties, which we will call the 
instabilityproperty and the robustness property in more detail 
for the M/M/l queue. We conjecture that these properties 
hold in more general network as well. Numerical results 
support this conjecture and demonstrate the high efficiency 
of the proposed algorithm. 

The rest of the paper is organized as follows. In Sec- 
tion 2 we summarize the main ideas behind the adaptive 
approach to Importance Sampling. In Section 3 we formu- 
late the simulation model and give the main algorithm for 
simulating overflows in queueing networks. Results from 
a closer investigation of the W 1  queue are summarized 
in Section 4. In Section 5 we demonstrate numerically 
the effectiveness of the algorithm by investigating various 
queueing models, and in Section 6 concluding remarks are 
given. Finally, some auxiliary results and proofs are given 
in the appendix. 

2 IMPORTANCE SAMPLING AND THE CROSS- 
ENTROPY METHOD 

In this section we briefly review the ideas behind Importance 
Sampling (IS) and the Cross-Entropy (CE) method. For 
details the reader is referred to Rubinstein and Melamed 
(1998) and Rubinstein (1999). 

Let X = (XI, . . . , X,) be arandom vector taking values 
in some space X .  Let { f (.; U)} be a family of probability 
densities on X ,  with respect to some (unspecified) base 
measure. Here U is a real-valued parameter (vector). 

Let H be some real function on X .  Suppose we wish 
to estimate, via simulation, 

where IE, denotes the expectation under f (. ; U). In this 
paper we will be mostly concerned with functions H that 
are indicators of certain events; for example H ( X )  = ZA, 
with A = { X  E XO)  for some subset Xi c X .  When the 
probability of A is very small we say that A is a rare event. 

A naive way to estimate yu is to use crude Monte-Carlo 
simulation: Draw a random sample X ( l ) ,  . . . , X ( N )  from 
f (- ; U); then H ( X ( ' ) )  is an unbiased estimator 
of yu. However this poses serious problems when H is the 

indicator of a rare event. In that case a large simulation 
effort is required in order to estimate yu accurately. 

An alternative is to use Importance Sampling simulation: 
Draw a random sample X ( ' ) ,  . . . , X ( N )  from f(. ; G ) ;  then 

i=l  
N 

with likelihood ratio 

f (X( ' )  ; U) 
f (X(')  ; a) ' W ( X ;  U, C) := 

is an unbiased estimator of yu. We say that we perform 
the simulation under a change of measure parameterized 
by the tilting parameter (vector) C. The aim is now to 
find an optimal tilting parameter *U such that the variance, 
or equivalently, the second moment, of the IS estimator is 
minimal. In other words we wish to find 

More generally, using again the principle of IS, this is 
equivalent to finding 

for any tilting parameter U,. 
An analytic expression for the optimal tilting parameter 

*U is typically not available. However, it can be estimated 
by minimizing, possibly numerically, the estimator of the 
expectation in (3), leading to the approximation 

N 

uj+1 = argmjn H ~ ( x ( ' ) )  w(x('); U, E) w(x('); U, vi) , 
i= l  

(4) 

where X ( ' ) ,  . . . , is a random sample from f(-, u j ) .  

This formula forms the basis of an iterative scheme to es- 
timate the true optimal tilting parameter. Note that the 
evaluation of (4) in general involves numerical optimiza- 
tion, which may be quite time-consuming. A much more 
convenient approach is to replace (2) with its Cross-Entropy 
equivalent introduced in Lieber and Rubinstein (1998), Ru- 
binstein (1999). This typically leads to much more simple 
(analytical) updating rules than (4). 
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2.1 Cross-Entropy Method 

It is well known that the best possible change of measure 
to estimate yu is such that X has a density g given by 

( 5 )  

for all x E X .  However, this density may not belong to the 
family {f(.; U)}. Instead of trying to find a tilting parameter 
*U which minimizes the variance of the estimator (1) we 
could try to find a density f(.; U*) which, in some sense, is 
closest to the density given in (5).  One way of doing this is 
by minimizing the Kullback-Leibler or Cross Entropy (CE) 
“distance” between g and f(.; U*) which is given (see e.g. 
Kapur and Kesavan (1992)) by 

where E, denotes the expectation under g. It is not difficult 
to see that this is equivalent to finding 

U* = argm-uIE, H(X)logf(X; a ) .  (7) 
U 

Analogously to (3) this is equivalent to 

U* = arg m_ax Euj H ( X )  W ( X ;  U, Uj) log f(X; 5), (8) 

for any tilting parameter U j .  
estimate U* by 

Similarly to (4) we may 

N 
u j + l  = argm_ax 

where X(’), . . . , X(N) is a random sample from f(., v i ) .  
Since under quite mild conditions (Rubinstein and Shapiro 
1993) the sum in (9) is convex and differentiable with 
respect to Z, the tilting vector uj+l  in (9) may be readily 
obtained by solving (with respect to S) the following system 
of nonlinear equations: 

H ( x ( ’ ) )  w(x(‘);  U ,  v i >  log f (x( ’ ) ;  ii) , 
i=l 

(9) 

N 
H ( X ( ‘ ) )  W(X(’); U, Uj) v log f (P; S) = 0, (10) 

i= l  

where the gradient is with respect to 5. This, of course, 
provided that the expectation and differentiation operators 
can be interchanged (Rubinstein and Shapiro 1993) and 
the function (8) is convex and differentiable with respect 
to ij. The advantage of this approach is that V j + l  can 
often be calculated analytically. In particular, this happens 
if the distributions of the random variables belong to a 

Natural Exponential Family (NEF); this is demonstrated in 
the Appendix for a simple case, and in the next section for 
a general queueing model. 

3 ESTIMATING BUFFER OVERFLOW 
PROBABILITIES 

In this section we present the main algorithm for estimating 
buffer overflow probabilities in queueing networks. 

Consider an open network of GI/G/l queues with 
Markovian routing. We are interested in the probability 
y(l)  of the event A that the content of a certain queue, or 
the combined contents of several queues, exceeds a certain 
level l during an interval [0, TI,  where T is some stopping 
time for the process X of interarrival times (from outside 
the system) and service times and routing decisions. Typi- 
cally, T is the length of a busy cycle, or the first time until 
either the content of a queue exceeds level l or the system 
becomes empty. 

We wish to estimate y(l)  by using an IS procedure, 
in which we can change the service and interarrival time 
distribution at each queue. We assume that for each queue 
the interarrival and service time distributions belong to a 
NEF family that is reparametrized by the mean (vector of 
means) U, as discussed in the Appendix. Note that such 
an IS procedure is state independent: the change of the 
distributions is made globally and does not vary with the 
state variables of the system (e.g., the content of the queues). 

The idea is to first estimate the optimal tilting parameter 
via the iterative schemes (4) or (9) and then to use this to 
estimate y(l)  via ordinary IS. 

In most cases of interest y ( l )  is a rare event probabil- 
ity. This means that the choice of a “good” initial tilting 
parameter uo for the scheme (4) or (9) is crucial. For gen- 
eral queueing networks it is unclear what comprises a good 
initial guess. Obviously, the system should be instable, but 
it is far from trivial to determine which instable regimes 
are good and which are not good. 

We now make three conjectures. All conjectures have 
been observed numerically and some can be proved in certain 
simple situations, (see below). 

1. Instability property. The optimal tilting parameter 
corresponding to overflow of a low level l o  (e.g. 
l o  = 3 or l o =  4) renders the system instable. 
Robustness property. An optimal parameter cor- 
responding to overflow of a low level &-, is a “good” 
initial tilting vector for finding the optimal tilting 
parameter for the high level l .  I.e., the estimation 
of the tilting parameter for the high level l is robust 
(insensitive) to the choice of Co. 
CE optimality property. The minimum variance 
tilting parameter asymptotically coincides with the 
minimum CE tilting parameter (see Lieber and 

2. 

3. 
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Rubinstein (1998) for the proof for certain simple 
situations). 

The third property means that we can use a very simple 
updating formula for the tilting vectors. In particular, let 
U = ( V I ,  . . . , UK) be the (nominal) vector of means cor- 
responding to the pdfs ( f 1 ,  . . . , f ~ )  of interarrival times 
(customers arriving to the queue from outside the system) 
and service times at the queues, assuming that the inter- 
arrival and service times are random. For simplicity we 
assume for the moment that the routing probabilities remain 
fixed; see however Remark 3.2. Let H ( X )  be the indicator 
of the event A. Note that each parameter Uk corresponds to 
a service time or an (external) interarrival time at a certain 
queue. For each such service or interarrival time (indexed 
by k) there will be Tk service cornpletions/inter-arrivds. 
Denote these by Y k l ,  . . . , Y k s .  It follows that the density 
f(X; U), corresponding to the history of the process X 
during [O, TI, is the product 

Thus the likelihood ratio W(X; U, v i ) ,  corresponding to 
history of the process X during [0, TI, is the quotient the 
products of the form above. Now, combining (1 l), (9) and 
the Appendix, it is not difficult to see that for NEFs the 
components of the tilting vector should be updated as 

where the simulation is performed under tilting vector U j . 
Based on the three properties above we now have the 

algorithm shown in Figure 1. 
Remark 3.1. To assess if an initial tilting vector uo is “good” 
we have to consider how effective the second stage of the 
Main Algorithm is. Numerical evidence shows that vectors 
U 1, u2,  . . . converge accurately and fast to the optimal tilting 
vector U*. 
Remark 3.2. In the above, each random variable (and thus 
each element of U) was assumed to correspond to a service 
or interarrival time. However, the same formalism also 
applies to random routing among two destinations: this 
involves a Bernoulli random variable, with outcomes 0 and 
1 corresponding to the two destinations. The mean of this 
random variable is just the routing probability, so the routing 
probability can be directly incorporated into U, thus allowing 
our algorithm to also find the optimal routing probability. 

Main Algorithm 

pilot stage: 

1. 

2. 

3. 

Choose an initial buffer level l o .  Choose the 
initial tilting vector uo = U. 
Simulate N1 paths, using the tilting vector 
uo, for overflow level l o .  
Find the tilting vector u1 from (12), for over- 
flow level l o .  

lSeeond stage: 
1. Initialize as follows: j := 0 (iteration 

counter); Choose as initial tilting vector uo 
the resulting tilting vector (u1) of the pilot 
stage. 

2. Simulate N2 replications with tilting vector 

3. Find the tilting vector uj+l from (12), for 
overflow level l .  

4. Increment j and repeat steps 2-4, until the 
tilting vector has converged. 

U j  . 

Third stage: 

Estimate the probability yv via IS simulation, 
as in (1). with the final tilting vector obtained 

Figure 1: The Main Algorithm 

4 IS AND THE CE-METHOD APPLIED TO THE 
M/M/l QUEUE 

For a single M I M I 1  queue the behaviour of the proposed 
method, and in particular the three properties conjectured 
earlier, can be studied analytically. A detailed analysis 
of the CE method applied to the MIMI1 queue can be 
found in de Boer, Kroese, and Rubinstein (2002); we only 
summarize the results here. 

A few preliminaries: the M I M I  1 queue is simulated as a 
discrete-time Markov chain (as opposed to the continuous- 
time repesentation used in the rest of this paper). The 
probability of arrival in the DTMC is p = h/ (h  + p) ,  
where h is the arrival rate and p is the service rate. The 
probability of service completion is q = 1 - p.  The tilting 
is described by the exponential tilting parameter 8, from 
which the tilted arrival and service probabilities follow: 
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It can be shown that the optimal tilted traffic intensity c(C)  1.4. 
for the buffer overflow probability in a M/M/l queue is 1. 3 .  
greater than unity regardless of the buffer size C, (e 2 2). 
This obviously is the instability property. 

In addition, c(C) decreases in C and lime,,@(C) = 

1.2. 

1.1- 

4.1 Instability Property 

*. 

* *  

theta 
1.5r  

1 

0.9 

p-’ ;  the latter is the well-known asymptotically optimal tilt 
for a single queue (Sadowsky 1991). * .. * .  * *  ... 

In each iteration, the tilting parameter for the next iteration 
is estimated using an equation like (12), which is a ratio 
estimator: the new tilting parameter is given as the ratio 
of two sample averages. A sufficient condition for such an 
estimator to have finite variance is that the variances of both 

Figure 2: Optimal Tilting Parameter *8 for Minimizing Vari- 
ance (Stars) and 8* for Minimizing CE (Dots) for Various 
Valuesoft; withp = 3/10andi = 1. Note: 8*(C) > * 6 J ( C ) .  
Also, e*(2) = e*(2) = 00. 

the numerator and the denominator, and the expectation of 

5 SIMULATION RESULTS their product, are all finite, and that the denominator is non- 
zero. For the case of IS-simulation of an MIMI1 queue, 
it can be shown that this condition is only satisfied-if the 
simulation is run at a not-too-large tilting 8. 

As noted in Section 4.1, for a lower overflow level the 
optimal tilting is larger. So the first step, using a low CO, 

In sections 5.1 - 5.4 we give some numerical examples of 
the application of our Main Algorithm with the view to 
illustrate the three properties we have discussed above. 

5.1 Single M / M / l  Queue may produce-a rather high tilting parameter s f o r  use in 
the second iteration. Consequently, in the second iteration 
the sufficient condition maynot be satisfied; then it is not 
guaranteed that the estimate for 8 found there (for use as 
tilting parameter in the third iteration) has finite variance 
(the theory does not tell). As an example, if p = 0.3/0.7, 
CO should be chosen at least 7 in order for the sufficient 
condition to be satisfied. 

Clearly, the above results do not fully support the 
conjectured robustness property: CO must not be too small 
for robustness to be proved. Still, as will be shown in 
the experiments section, even with a small l o  the method 
converges, although a few more iterations are needed. This 
needs further study. 

4.3 CE Optimality Property 

For the M / M /  1 queue, it can be shown that the minimization 
of variance and cross-entropy are asymptotically equivalent, 
in the sense that the optimal tilting factors for l -+ 00 both 
converge to the same limit value (which corresponds to 
exchanging the arrival and service rates). This is illustrated 
in Figure 2, which gives the tilting parameter value *8 
that minimizes the variance, and 8’ that minimizes the 
cross-entropy, as a function of C. 

As a first example, we consider the M/M/1 queue, with 
arrival rate X = 0.3, service rate p = 0.7, and overflow 
level (buffer size) C = 20. 

The results are presented in Table 1. The table has one 
row for every simulation run (iteration), listing the number 
of replications (busy cycles) simulated, the values of (in 
principle) the tilting parameters V k ,  and the estimate for the 
overflow probability found in that simulation run along with 
its relative error (RE). In the present model all distributions 
are exponential, and tilting them exponentially gives again 
an exponential distribution. Therefore, instead of listing 
the tilting parameters vk explicitly, we prefer to show the 
resulting rates, since these are more intuitive. The same 
applies to routing probabilities in later examples. 

Table 1 shows results for two different values of the 
overflow level CO in the pilot run, namely 2 and 8. The 
former is the minimum that can work; for CO = 1, the 
system would already have reached the “rare” target event 
in its initial state. hi the case with CO = 8, the overflow in 
the pilot run is rather rare, so a large number of replications 
are needed to observe it a reasonable number of times (16 
in this experiment). 

The results for the case CO = 8 show that a total of 
three iterations can indeed be enough. The first (pilot run) 
makes the system unstable; i.e., the h and p that the pilot 
run calculates as optimal for the second iteration, are such 
that X > p. The second run does not yet yield an optimal 
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repl. 
100 

Table 1: Simulation Results for the MIMI1 Queue, for 
C = 20. For Comparison: Direct Calculation Yields an 
Overflow Probability of 5.826 . 

h p estimate rel. error 
0.3 0.7 - - 

- 
eo = 
iter. 

1 
2 
3 
4 
5 
6 

eo = 
iter. 

1 
2 
3 
4 
5 

- 

- 

(i.e., low RE) estimate of the overflow probability, since it 
uses a tilting found in the first iteration and thus optimal 
for an overflow level of 8 rather than 20. However, the 
second run does find optimal values for A. and p to be used 
in the third iteration: the third iteration achieves a relative 
error of 0.0398, and further iterations do not significantly 
improve this. 

In the case of CO = 2, things look a bit different. 
Clearly, five iterations are needed here before h and p 
are sufficiently close to their final values to achieve a low 
relative error. This is not surprising: in Section 4.2 it was 
noted that if CO is chosen too low, the estimator for the 
tilting parameter becomes the ratio of two infinite-variance 
estimates, and thus has unknown behaviour. The present 
simulation results suggest that the estimator for the tilting 
vector is biased in this situation, causing more iterations 
to be needed; with every iteration we move closer to the 
correct tilting and thus away from the “problematic” region. 

5.2 Two Non-Markovian Queues with Random 
Feedback 

As a second example, we consider the network depicted 
in Figure 3. It consists of two queues in tandem, where 
customers departing from the second queue either leave the 
network (with probability p ) ,  or go back to the first queue 
(with probability 1 - p ) .  We are interested in the probability 
that the total number of customers in the network exceeds 
some high level, 50 in this example, during one busy cycle. 

Interestingly, for this model (and in general, any model 
with random feedback) we cannot work with CO = 2, as we 
could in the single M / M / 1  queue. The reason for this is the 
following. Consider using l o  = 2. This means that after 
starting the busy-cycle with 1 customer in the network, we 

Figure 3: Two Queues in Tandem with Feedback 

are interested in the probability of reaching a state where 2 
customers are in the network, before the network becomes 
empty. So, until the overflow there will be always exactly 
1 customer in the network: if less than 1, the busy-cycle 
would already end, and if more than 1 the overflow would 
already happen. Therefore, no departures from the system 
can occur on a sample path to the overflow. Consequently, if 
ever a service completion happens at the second queue on the 
sample path, the customer leaving that queue must be routed 
back to the first queue, otherwise the busy-cycle would end. 
Therefore, we will observe customers being routed back to 
the first queue with probability 1, which then becomes the 
value of the routing probability for the next iteration due 
to the CE algorithm. And once a routing probability has 
become 1, later iterations will never observe the alternative 
routing decision, so the probability will remain 1. So using 
a pilot run with l o  = 2 forces the routing probability to be 
1 in all later iterations, which is incorrect if C > 2 in those 
iterations. 

In this example, the interarrival time distribution is a 
two-stage Erlang distribution, with exponential parameter 
)c = 0.2.  The service time distributions are uniform on 
[0,3.333] and [0,5], for the first and second server, re- 
spectively. The results are shown in Table 2. In this table, 
61 and 62 are the exponential tilting factors applied to the 
non-Markovian service time distributions; basically, these 
are the 6 from (13). 

Table 2: Simulation Results for the Non-Markovian Network 
for P = 411 

CO = 3 

lo4 0.34 0.12 0.09 0.21 3.48. IOdz5 0.155 
lo4 0.36 -0.00 0.17 0.23 3.37. 0.015 

4 lo4 0.36 0.00 0.15 0.24 3.34. 0.014 
5 lo4 0.36 0.00 0.15 0.24 3.29. 0.012 

lo6 0.36 0.00 0.15 0.24 3.29. 0.001 
eo = 7 
iter. I repl. I A. 61 62 p 
1 I io4 I 0.2 o o 0.5 

io4 
io4 
to4 
104 
104 
106 

0.34 0.05 0.14 0.20 

0.36 0.00 0.16 0.24 
0.36 -0.00 0.15 0.24 

0.36 -0.00 0.15 0.24 
0.36 -0.00 0.16 0.24 
0.36 0.00 0.16 0.24 

estimate RE 
- - 

3.35. 0.041 
3.24 . 0.01 1 
3.27. 0.012 
3.29. 0 .0~1 
3.22 . 10-25 0.01 1 
3.28. 0.001 
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The algorithm converges quickly, already reaching the 
final accuracy in the third iteration. No numerical results are 
available for validation; therefore, we did the last iteration 
with 100 times more replications, to see whether relative 
error decreases appropriately (i.e., by a factor of ,/i@ = 
10). The fact that this is indeed the case, gives confidence. 

5.3 Five-node Jackson Network 

As a final example, consider the estimation of the overflow 
probability of the total population of the five-node Jackson 
network with random routing depicted in Figure 4. 

--+P5 

Figure 4: A Five-node Jackson Network. 

We first simulate this network at a parameter setting 
where server 3 is the bottleneck queue: it has a load of 0.2, 
while the other servers have a load of 0.1. These parameters 
are as follows: h = 3, pl = 40, p2 = 20, p3 = 25, p4 = 
5 0 , ~ s  = 60, with all routing probabilities equal to 0.5. 
The overflow level during the pilot run, eo, was set to 5: 
this level is reached by about 1% of all sample paths under 
the original measure. 

The results are shown in Table 3. For an overflow 
level of 80 the method still converges fine; and although the 
relative error tends to vary notably among further iterations, 
the estimates do appear to be consistent. We have repeated 
the simulation for various overflow levels and have observed 
that the relative error does not increase much between t = 20 
and = 80, suggesting that the method is asymptotically 
efficient. 

It is noteworthy that the parameters found by the CE pro- 
ce'dure are close to those calculated by the method of Frater, 
Lennon, and Anderson (1991). 

Table 3: Simulation Results for the Five-node Network with 
One Bottleneck; CO = 5, r! = 80. Note That Only Four of 
the Nine Tilting Parameters are Shown Here. 

iter. 1 repl. I A p2 p3 ,u4 I estimate RE 
1 116) 3.0 0.500 25.0 50.0 I L - 

The above experiment has been repeated with a different 
set of service rates, chosen such that all servers had an 
equal load. For an overflow level r! = 20, the method still 
converged fine, but a much larger number of replications was 
needed ( lo7). For a higher overflow level, no convergence 
was obtained: presumably, this is a case where a state- 
independent change of measure does not work well enough. 
A state-dependent change of measure does help here, at the 
expense of complexity; see de Boer (2000) or de Boer and 
Nicola (2002). 

5.4 Root Finding 

In practical problems, one often needs to do root finding: 
finding a buffer size for which the overflow probability is 
less than a given value. The present simulation technique 
can easily be used for that, because for high overflow levels 
the optimal tilting turns out to be almost independent of 
the overflow level (cf. Section 4.1). Thus, after finding a 
good tilting for some high overflow level, one can estimate 
the overflow probability for a large range of levels in one 
run. (Note that the CE algorithm for static models, as 
in Rubinstein and Melamed (1998), does not have this 
property, making root finding more involved.) 

As an example, the two-node network from Section 5.2 
is used. A simulation run with the tilting found by the CE 
method for overflow level r! = 50, is used to obtain all 
the overflow probabilities given in Table 4. Clearly, these 
estimates have almost equal relative error, and one easily 
concludes that a buffer size of 22 is the minimum that will 
make the overflow probability less than 10-lo. 

6 CONCLUDING REMARKS 

In this paper, we have presented an efficient Cross-Entropy 
method for estimation of buffer overflow probabilities in 
queueing networks via simulation. We have recognised 

Table 4: Numerical Results for the Root Find- 
ing Example. 
level overflow probability relative error 

2 0.422 0.0058 
3 0.170 0.0082 

21 1.62. 0.01 1 1  
22 5.05. lo-" 0.0109 

48 3.40. 0.01 13 
49 1.05 . 0.01 11 
50 3.27. 0.0109 
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three properties (CE optimality, instability and robustness) 
which explain why the method works well. Numerical 
results support the conjectured properties and demonstrate 
the high efficiency of the proposed algorithm for queueing 
networks up to five queues. 

Some issues for further research are the following. 

Extension of the proofs of the three properties to 
more general queueing models. 
Further investigation of the behaviour of the ratio 
estimators of type (12) for the M/M/1 queue and 
more general queueing models. 
Finding conditions under which a state-independent 
change of measure, as used in this method, can or 
cannot lead to an (asymptoticaily) efficient simu- 
lation. 

APPENDIX 

A.l Natural Exponential Families (NEFs) 

Consider a univariate family of distributions with densities 
(pmf‘s, pdf‘s) [ fe, 8 E @), for some subset 0 c R. The 
family is said to be a NEF if 

where h is a positive (normalization) function, cf. Morris 
(1982) and Jorgensen (1997). For example, if we take 
8 = A l a 2  and K ( 8 )  = a202/2, then fe is the density of 
the N(h, a2) distribution, where a2 is fixed. 

There are many NEFs. In fact, every distribution with 
pdf fo for which the moment generating function exists in 
a neighbourhood of 0 generates its own NEF by letting K 

be the cumulant function 

and by substituting h = fo. into (13). We say that fe is 
obtained from fo by an exponential twist/tilt with twist- 
inshiltins parameter 8. 

Now let X have a distribution in some NEF { fe}. It is 
not difficult to see that 

Since K’ is increasing we may reparametrize the family using 
the mean U. In particular, to the NEF above corresponds a 
family (g,,} such that for each pair (8, U) satisfying K ’ ( 8 )  = U 
we have g,, = fg .  

Now consider (8) for the case where X is a random 
variable from a NEF [ f (.; U)}, reparametrized by the mean 
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U. Hence, 

where 8 is some differentiable function of U. We wish to 
maximize, with respect to a the function D defined as 

D(a) = E,, H(X) W(X; U, Uj) log f (X; 6) . 

Solving D’(6) = 0 for a gives 

E,, H(X) w(x; U, {e’(a)x - K ’ ( e ( 6 ) )  e’(a)] 
= E”, H(X) w(x; U, v j )  e’(a)(x - a) = 0, 

which is solved for 6 = U*, with 

That U* is a global maximum follows from the convexity 
of D and the fact that D”(u*) = -O’(u*)IE,,H(X) < 0, 
because O’(u*) = l/Var,,*(X) > 0. 
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