456 research outputs found
Understanding of hydrogel network formation and its application in the architecture of significantly enhanced hydrogel
An understanding of the physical hydrogel network formation has been obtained by dynamic rheological experiments. The evidence shows that the network formation turns out to be a nucleation-controlled process. It was found that there exists a critical temperature Tc; fiber branching is greatly enhanced when the network formation is performed in the regime of T<Tc (T, the final setting temperature). This finding enables the authors to build significantly enhanced gel networks. So far G′ (elastic modulus) of the hydrogel network has been enhanced by 187% while the formation period can be greatly shortened to only 1/20 of the previous process.<br /
Novel Collective Effects in Integrated Photonics
Superradiance, the enhanced collective emission of energy from a coherent
ensemble of quantum systems, has been typically studied in atomic ensembles. In
this work we study theoretically the enhanced emission of energy from coherent
ensembles of harmonic oscillators. We show that it should be possible to
observe harmonic oscillator superradiance for the first time in waveguide
arrays in integrated photonics. Furthermore, we describe how pairwise
correlations within the ensemble can be measured with this architecture. These
pairwise correlations are an integral part of the phenomenon of superradiance
and have never been observed in experiments to date.Comment: 7 pages, 3 figure
Shortest paths on systems with power-law distributed long-range connections
We discuss shortest-path lengths on periodic rings of size L
supplemented with an average of pL randomly located long-range links whose
lengths are distributed according to P_l \sim l^{-\xpn}. Using rescaling
arguments and numerical simulation on systems of up to sites, we show
that a characteristic length exists such that for
. For small p we find
that the shortest-path length satisfies the scaling relation
\ell(r,\xpn,p)/\xi = f(\xpn,r/\xi). Three regions with different asymptotic
behaviors are found, respectively: a) \xpn>2 where , b)
1<\xpn<2 where 0<\theta_s(\xpn)<1/2 and, c) \xpn<1 where
behaves logarithmically, i.e. . The characteristic length is
of the form with \nu=1/(2-\xpn) in region b), but depends
on L as well in region c). A directed model of shortest-paths is solved and
compared with numerical results.Comment: 10 pages, 10 figures, revtex4. Submitted to PR
Relaxation Effects in the Transition Temperature of Superconducting HgBa2CuO4+delta
In previous studies on a number of under- and overdoped high temperature
superconductors, including YBa_{2}Cu_{3}O_{7-y} and Tl_{2}Ba_{2}CuO_{6+\delta},
the transition temperature T_c has been found to change with time in a manner
which depends on the sample's detailed temperature and pressure history. This
relaxation behavior in T_c is believed to originate from rearrangements within
the oxygen sublattice. In the present high-pressure studies on
HgBa_{2}CuO_{4+\delta} to 0.8 GPa we find clear evidence for weak relaxation
effects in strongly under- and overdoped samples () with
an activation energy . For overdoped
HgBa_{2}CuO_{4+\delta} E_{A} increases under pressure more rapidly than
previously observed for YBa_{2}Cu_{3}O_{6.41}, yielding an activation volume of
+11 \pm 5 cm^{3}; the dependence of T_c on pressure is markedly nonlinear, an
anomalous result for high-T_c superconductors in the present pressure range,
giving evidence for a change in the electronic and/or structural properties
near 0.4 GPa
Lepton polarization correlations in
In this work we will study the polarizations of both leptons () in the
decay channel . In the case of the dileptonic inclusive
decay , where apart from the polarization asymmetries
of single lepton , one can also observe the polarization asymmetries of
both leptons simultaneously. If this sort of measurement is possible then we
can have, apart from decay rate, FB asymmetry and the six single lepton
polarization asymmetries (three each for and ), nine more
double polarization asymmetries. This will give us a very useful tool in more
strict testing of SM and the physics beyond. We discuss the double polarization
asymmetries of leptons in the decay mode within
the SM and the Minimal Supersymmetric extensions of it.Comment: 21 pages, 21 figures; version to match paper to appear in PR
Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind
Using linear Vlasov theory of plasma waves and quasi-linear theory of
resonant wave-particle interaction, the dispersion relations and the
electromagnetic field fluctuations of fast and Alfven waves are studied for a
low-beta multi-ion plasma in the inner corona. Their probable roles in heating
and accelerating the solar wind via Landau and cyclotron resonances are
quantified. We assume that (1) low-frequency Alfven and fast waves have the
same spectral shape and the same amplitude of power spectral density; (2) these
waves eventually reach ion cyclotron frequencies due to a turbulence cascade;
(3) kinetic wave-particle interaction powers the solar wind. The existence of
alpha particles in a dominant proton/electron plasma can trigger linear mode
conversion between oblique fast-whistler and hybrid alpha-proton cyclotron
waves. The fast-cyclotron waves undergo both alpha and proton cyclotron
resonances. The alpha cyclotron resonance in fast-cyclotron waves is much
stronger than that in Alfven-cyclotron waves. For alpha cyclotron resonance, an
oblique fast-cyclotron wave has a larger left-handed electric field
fluctuation, a smaller wave number, a larger local wave amplitude, and a
greater energization capability than a corresponding Alfven-cyclotron wave at
the same wave propagation angle \theta, particularly at < \theta <
. When Alfven-cyclotron or fast-cyclotron waves are present, alpha
particles are the chief energy recipient. The transition of preferential
energization from alpha particles to protons may be self-modulated by
differential speed and temperature anisotropy of alpha particles via the
self-consistently evolving wave-particle interaction. Therefore, fast-cyclotron
waves as a result of linear mode coupling is a potentially important mechanism
for preferential energization of minor ions in the main acceleration region of
the solar wind.Comment: 29 pages, 10 figures, 3 tables. Accepted for publication in Solar
Physic
Probing Topcolor-Assisted Technicolor from Top-Charm Associated Production at LHC
We propose to probe the topcolor-assisted technicolor (TC2) model from the
top-charm associated productions at the LHC, which are highly suppressed in the
Standard Model. Due to the flavor-changing couplings of the top quark with the
scalars (top-pions and top-Higgs) in TC2 model, the top-charm associated
productions can occur via both the s-channel and t-channel parton processes by
exchanging a scalar field at the LHC. We examined these processes through Monte
Carlo simulation and found that they can reach the observable level at the LHC
in quite a large part of the parameter space of the TC2 model.Comment: Version to appear in PRD (Rapid Communication
Optimal modelling of buildings through simultaneous automatic simplifications of point clouds obtained with a laser scanner
[EN] In recent years, the laser scanner has become the most used tool for modelling buildings in pure documentation and structural studies. Laser scanning provides large numbers of points in a minimum amount of time with great precision. The point clouds generated and the subsequent mosaics (data fusion of different clouds) contain millions of points with a heterogeneous density that define the 3D geometry of the buildings. Often, the number of points results in excessive information without offering a better definition. As a result, it is necessary to analyse which points can be eliminated and which ones cannot, based on precision criteria, to obtain a precise geometry with the smallest possible number of points for each part of the building. The algorithm developed in this work reduces the point clouds (in mosaics made up of clouds with over 10 million points) with precision criteria by as much as 99% while still accurately resolving the geometry of the object. The developed process is automatic such that different models with different resolutions can be obtained simultaneously. As a result, we obtain single clouds with homogenous distributions and densities throughout the model of the building (based on multiple overlapping clouds), with a computational cost of only a few seconds per cloud. The final result is a complete model of the entire building with the optimal resolution for each element of the structure. (C) 2016 Elsevier Ltd. All rights reserved.S2432519
Electric charge quantization and the muon anomalous magnetic moment
We investigate some proposals to solve the electric charge quantization
puzzle, which simultaneously explain the recent measured deviation on the muon
anomalous magnetic moment. For this we assess extensions of the Electro-Weak
Standard Model spanning modifications on the scalar sector only. It is
interesting to verify that one can have modest extensions which easily account
for the solution for both problems.Comment: 20 pages, 1 figures, needs macro axodraw.st
Numerical sedimentation particle-size analysis using the Discrete Element Method
Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way- coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates.
Five samples with different particle-size distributions are modeled by about six million rigid spheres pro- jected on two-dimensions, with diameters ranging from 2.5 × 10−6 m to 70 × 10−6 m, forming a water sus- pension in a sedimentation cylinder. DEM simulates the particle s movement considering laminar flow in- teractions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.R. Bravo and J.L. Perez-Aparicio were partially supported by the project MICIIN #BIA-2012-32918. The second researcher used the grant GV BEST/2014/232 for the completion of this work. J. Jaime Gomez-Hernandez acknowledges the financial aid from project MINECO CGL2011-23295.Bravo, R.; Pérez Aparicio, JL.; Gómez Hernández, JJ. (2015). Numerical sedimentation particle-size analysis using the Discrete Element Method. Advances in Water Resources. 86:58-72. https://doi.org/10.1016/j.advwatres.2015.09.024S58728
- …