44 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Immediate-early mRNA-2 of herpes simplex viruses types 1 and 2 is unsplced: conserved sequences around the 5′ and 3′ termini correspond to transcription regulatory signals

    No full text
    Nuclease SI and exonuclease VII analyses of immediate-early (IE) mRNA-2 of herpes simplex viruses types 1 and 2 (HSV-1, HSV-2) show them to be unspliced and of similar length. The DNA sequences around the 5′ and 3′ termini have been determined. Comparison of the sequences around the 5′ ends reveals several common features. (1) Four discrete blocks of upstream homology which are precisely colinear with respect to the 5′ termini of the mRNAs; the blocks include the ‘TATA’ box, a G-C rich sequence and a sequence (AATTAAATACAT) which may be involved in the coordinate induction of the IE class of genes. (2) Severa copies of the sequence CCCCGCCC, found in different upstream positions in HSV-1 and HSV-2, which may be important in the expression of a wide variety of eukaryotic genes. (3) Potential hairpin structures in the region of the 5′ termini which are present at similar locations in HSV-1 and HSV-2. Sequence comparison around the 3′ termini of IEmRNA-2 reveals high homology at the proposed C-terminus of the polypeptide
    corecore