14 research outputs found

    High Magnetic Field NMR Studies of LiVGe2_2O6_6, a quasi 1-D Spin S=1S = 1 System

    Full text link
    We report 7^{7}Li pulsed NMR measurements in polycrystalline and single crystal samples of the quasi one-dimensional S=1 antiferromagnet LiVGe2_2O6_6, whose AF transition temperature is TN≃24.5T_{\text{N}}\simeq 24.5 K. The field (B0B_0) and temperature (TT) ranges covered were 9-44.5 T and 1.7-300 K respectively. The measurements included NMR spectra, the spin-lattice relaxation rate (T1−1T_1^{-1}), and the spin-phase relaxation rate (T2−1T_2^{-1}), often as a function of the orientation of the field relative to the crystal axes. The spectra indicate an AF magnetic structure consistent with that obtained from neutron diffraction measurements, but with the moments aligned parallel to the c-axis. The spectra also provide the TT-dependence of the AF order parameter and show that the transition is either second order or weakly first order. Both the spectra and the T1−1T_1^{-1} data show that B0B_0 has at most a small effect on the alignment of the AF moment. There is no spin-flop transition up to 44.5 T. These features indicate a very large magnetic anisotropy energy in LiVGe2_2O6_6 with orbital degrees of freedom playing an important role. Below 8 K, T1−1T_1^{-1} varies substantially with the orientation of B0B_0 in the plane perpendicular to the c-axis, suggesting a small energy gap for magnetic fluctuations that is very anisotropic.Comment: submitted to Phys. Rev.

    Anomalous NMR Spin-Lattice Relaxation in SrB_{6} and Ca_{1-x}La_{x}B_{6}

    Get PDF
    We report the results of {11}B nuclear magnetic resonance (NMR) measurements of SrB_{6} and Ca_{0.995}La_{0.05}B_{6} below room temperature. Although the electrical resistivities of these two materials differ substantially, their {11}B-NMR responses exhibit some strikingly common features. Both materials exhibit ferromagnetic order, but their {11}B-NMR spectra reveal very small hyperfine fields at the Boron sites. The spin lattice relaxation T_{1}^{-1} varies considerably with external field but changes with temperature only below a few K. We discuss these unusual results by considering various different scenarios for the electronic structure of these materials.Comment: Accepted for publication in Phys. Rev. B Rapid communication, 4 pages, 3 figures. This manuscript replaces an earlier version and includes some minor changes in the text and in Fig.

    Theory of High \tc Ferromagnetism in SrB6SrB_6 family: A case of Doped Spin-1 Mott insulator in a Valence Bond Solid Phase

    Full text link
    Doped divalent hexaborides such as Sr1−xLaxB6Sr_{1-x}La_xB_6 exhibit high \tc ferromagnetism. We isolate a degenerate pair of 2p2p-orbitals of boron with two valence electrons, invoke electron correlation and Hund coupling, to suggest that the undoped state is better viewed as a spin-1 Mott insulator; it is predicted to be a type of 3d Haldane gap phase with a spin gap ∌0.1eV\sim 0.1 eV, much smaller than the charge gap of >1.0eV > 1.0 eV seen in ARPES. The experimentally seen high \tc `ferromagnetism' is argued to be a complex magnetic order in disguise - either a canted 6-sublattice AFM (≈1200\approx 120^0) order or its quantum melted version, a chiral spin liquid state, arising from a type of double exchange mechanism.Comment: 4 pages, 2 figures; minor corrections, references adde

    Comment on "Atomic jumps in quasiperiodic Al72.6_{72.6}Ni10.5_{10.5}Co16.9_{16.9} and related crystalline material"

    Full text link
    We disagree with a number of statements by Dolinsek et al. about the specificity of phason dynamics in quasicrystals (QCs).Comment: 2 pages, 0 figures, submitted to Physical Review

    Electronic Structure of Calcium Hexaboride within the Weighted Density Approximation

    Full text link
    We report calculations of the electronic structure of CaB6_6 using the weighted density approximation (WDA) to density functional theory. We find a semiconducting band structure with a sizable gap, in contrast to local density approximation (LDA) results, but in accord with recent experimental data. In particular, we find an XX-point band gap of 0.8 eV. The WDA correction of the LDA error in describing the electronic structure of CaB6_6 is discussed in terms of the orbital character of the bands and the better cancelation of self-interactions within the WDA.Comment: 1 figur

    Sr2V3O9 and Ba2V3O9: quasi one-dimensional spin-systems with an anomalous low temperature susceptibility

    Full text link
    The magnetic behaviour of the low-dimensional Vanadium-oxides Sr2V3O9 and Ba2V3O9 was investigated by means of magnetic susceptibility and specific heat measurements. In both compounds, the results can be very well described by an S=1/2 Heisenberg antiferromagnetic chain with an intrachain exchange of J = 82 K and J = 94 K in Sr2V3O9 and Ba2V3O9, respectively. In Sr2V3O9, antiferromagnetic ordering at T_N = 5.3 K indicate a weak interchain exchange of the order of J_perp ~ 2 K. In contrast, no evidence for magnetic order was found in Ba2V3O9 down to 0.5 K, pointing to an even smaller interchain coupling. In both compounds, we observe a pronounced Curie-like increase of the susceptibility below 30 K, which we tentatively attribute to a staggered field effect induced by the applied magnetic field. Results of LDA calculations support the quasi one-dimensional character and indicate that in Sr2V3O9, the magnetic chain is perpendicular to the structural one with the magnetic exchange being transferred through VO4 tetrahedra.Comment: Submitted to Phy. Rev.

    Bulk Electronic structure of Na0.35_{0.35}CoO2_{2}.1.3H2_{2}O

    Full text link
    High-energy (hÎœ\nu = 5.95 keV) synchrotron Photoemission spectroscopy (PES) is used to study bulk electronic structure of Na0.35_{0.35}CoO2_{2}.1.3H2_{2}O, the layered superconductor. In contrast to 3-dimensional doped Co oxides, Co 2p\it{2p} core level spectra show well-separated Co3+^{3+} and Co4+^{4+} ions. Cluster calculations suggest low spin Co3+^{3+} and Co4+^{4+} character, and a moderate on-site Coulomb correlation energy Udd∌_{dd}\sim3-5.5 eV. Photon dependent valence band PES identifies Co 3d\it{3d} and O 2p\it{2p} derived states, in near agreement with band structure calculations.Comment: 4 pages 4 figures Revised text added referenc

    NQRS Data for B6Ca (Subst. No. 0187)

    No full text

    Na2V3O7: An unusual low-dimensional quantum magnet

    No full text
    Results of present and previous measurements of the23Na NMR response, dc- and ac-magnetic susceptibilities and the specific heat ofNa2V3O7at low temperatures suggest that this material is close to a quantum critical point (QCP) atm0HÂŒ0 T. The experimental datacan be explained by assuming that below 100 K the localizedVmagnetic momentsĂ°SÂŒ12Þform a collection of dimers, with a broaddistribution of singlet–triplet gaps. Most of the dimers adopt a singlet ground state with gaps between 0 and 350 K. A small fraction ofthem forms triplet ground states with gaps between 0 and 15 K. The degeneracy of the triplet ground states is lifted by a phase transitionat an unusually low temperature of 0.086 K. Modest magnetic fields effectively quench this low-temperature state and the system is drivenaway from the QCP as the applied fields are enhanced to above 1
    corecore