412 research outputs found

    Minimal immersions of closed surfaces in hyperbolic three-manifolds

    Full text link
    We study minimal immersions of closed surfaces (of genus g2g \ge 2) in hyperbolic 3-manifolds, with prescribed data (σ,tα)(\sigma, t\alpha), where σ\sigma is a conformal structure on a topological surface SS, and αdz2\alpha dz^2 is a holomorphic quadratic differential on the surface (S,σ)(S,\sigma). We show that, for each t(0,τ0)t \in (0,\tau_0) for some τ0>0\tau_0 > 0, depending only on (σ,α)(\sigma, \alpha), there are at least two minimal immersions of closed surface of prescribed second fundamental form Re(tα)Re(t\alpha) in the conformal structure σ\sigma. Moreover, for tt sufficiently large, there exists no such minimal immersion. Asymptotically, as t0t \to 0, the principal curvatures of one minimal immersion tend to zero, while the intrinsic curvatures of the other blow up in magnitude.Comment: 16 page

    Holography and Defect Conformal Field Theories

    Full text link
    We develop both the gravity and field theory sides of the Karch-Randall conjecture that the near-horizon description of a certain D5-D3 brane configuration in string theory, realized as AdS_5 x S^5 bisected by an AdS_4 x S^2 "brane", is dual to N=4 Super Yang-Mills theory in R^4 coupled to an R^3 defect. We propose a complete Lagrangian for the field theory dual, a novel "defect superconformal field theory" wherein a subset of the fields of N=4 SYM interacts with a d=3 SU(N) fundamental hypermultiplet on the defect preserving conformal invariance and 8 supercharges. The Kaluza-Klein reduction of wrapped D5 modes on AdS_4 x S^2 leads to towers of short representations of OSp(4|4), and we construct the map to a set of dual gauge-invariant defect operators O_3 possessing integer conformal dimensions. Gravity calculations of and are given. Spacetime and N-dependence matches expectations from dCFT, while the behavior as functions of lambda = g^2 N at strong and weak coupling is generically different. We comment on a class of correlators for which a non-renormalization theorem may still exist. Partial evidence for the conformality of the quantum theory is given, including a complete argument for the special case of a U(1) gauge group. Some weak coupling arguments which illuminate the duality are presented.Comment: 47 pages, LaTeX, 2 figures, feynmf. v2: fixed minor errors, added references. v3: fixed more typo

    Optical Spectra of SNR Candidates in NGC 300

    Full text link
    We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from optical spectra, we find that of 28 objects previously proposed as SNRs from optical observations, 22 meet this criterion with six showing [SII]/Ha of less than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated with the 28 previously proposed SNRs. Of these four, three (included in the 22 above) meet the criterion. In all, 22 of the 51 nebular objects meet the [SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc

    On the equivalence between Implicit Regularization and Constrained Differential Renormalization

    Full text link
    Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rather distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.Comment: 16 page

    The Local Velocity Anomaly

    Full text link
    There is a velocity discontinuity at about 7 Mpc between the galaxies of the Local Sheet that are moving together with low internal velocity dispersion and the adjacent structures. The Local Sheet bounds the Local Void. The Local Sheet is determined to have a peculiar velocity of 260 km/s away from the center of the void. In order for this large velocity to be generated by an absence of gravity, the Local Void must be at least 45 Mpc in diameter and be very empty.Comment: Invited review, "Galaxies in the Local Volume", Sydney, 8-13 July, 2007. eds. B. Koribalski & H. Jerjen, Astrophys. & Space Sci. Proceed. 10 pages with 7 figure

    Linearized Treatment of Scalar perturbations in the Asymptotic Cosmological Model

    Full text link
    In this paper the implications of a recently proposed phenomenological model of cosmology, the Asymptotic Cosmological Model (ACM), on the behavior of scalar perturbations are studied. Firstly we discuss new fits of the ACM at the homogeneous level, including fits to the Type Ia Supernovae UNION dataset, first CMB peak of WMAP5 and BAOs. The linearized equations of scalar perturbations in the FRW metric are derived. A simple model is used to compute the CMB temperature perturbation spectrum. The results are compared with the treatment of perturbations in other approaches to the problem of the accelerated expansion of the universe.Comment: 14 pages, 5 figures. Presentation in sections 2 and 3 clarified, references added. Final version to appear in Astroparticle Physic

    Restricting quark matter models by gravitational wave observation

    Full text link
    We consider the possibilities for obtaining information about the equation of state for quark matter by using future direct observational data on gravitational waves. We study the nonradial oscillations of both fluid and spacetime modes of pure quark stars. If we observe the ff and the lowest wIIw_{\rm II} modes from quark stars, by using the simultaneously obtained radiation radius we can constrain the bag constant BB with reasonable accuracy, independently of the ss quark mass.Comment: To appear in Phys. Rev.

    An extension of the cosmological standard model with a bounded Hubble expansion rate

    Full text link
    The possibility of having an extension of the cosmological standard model with a Hubble expansion rate HH constrained to a finite interval is considered. Two periods of accelerated expansion arise naturally when the Hubble expansion rate approaches to the two limiting values. The new description of the history of the universe is confronted with cosmological data and with several theoretical ideas going beyond the standard cosmological model.Comment: 10 pages, 4 figures. Minor revisio

    Correlation Functions in 2-Dimensional Integrable Quantum Field Theories

    Get PDF
    In this talk I discuss the form factor approach used to compute correlation functions of integrable models in two dimensions. The Sinh-Gordon model is our basic example. Using Watson's and the recursive equations satisfied by matrix elements of local operators, I present the computation of the form factors of the elementary field ϕ(x)\phi(x) and the stress-energy tensor Tμν(x)T_{\mu\nu}(x) of the theory.Comment: 19pp, LATEX version, (talk at Como Conference on ``Integrable Quantum Field Theories''

    Tunneling and Metastability of continuous time Markov chains

    Full text link
    We propose a new definition of metastability of Markov processes on countable state spaces. We obtain sufficient conditions for a sequence of processes to be metastable. In the reversible case these conditions are expressed in terms of the capacity and of the stationary measure of the metastable states
    corecore