25 research outputs found

    Investing in health to improve the sustainability of cattle production in the United Kingdom: a narrative review

    Get PDF
    Livestock health is a key concern for all food system stakeholders and has considerable impacts upon sustainable food production. Improving productivity means that a set quantity of milk or meat may be produced at a lower economic cost, using fewer resources and with reduced greenhouse gas emissions (GHGe); however, diseases that reduce yield, growth or fertility have the opposite effect. The purpose of this narrative review was to assess the breadth of economic and environmental sustainability information relating to cattle health within the literature and to discuss related knowledge gaps within the literature. The mechanisms by which improved awareness and investment can lead to improved cattle health both on-farm and across the wider cattle industry are also appraised; concluding with the opportunities and challenges still outstanding in improving sustainability through livestock health. The economic and environmental impacts of cattle health have not been sufficiently quantified in the literature to draw valid conclusions regarding the sustainability impact of different diseases. Where available, economic data tended to be dated or extremely variable. Furthermore, environmental analyses did not use consistent methodologies and principally focused on GHGe, with little attention paid to other metrics. Although reducing disease severity or occurrence reduced GHGe, published impacts of disease varied from 1% to 40% with little apparent association between GHGe and industry-wide economic cost. An urgent need therefore exists to standardise methodologies and quantify disease impacts using a common baseline with up-to-date data inputs. Given the threat of antimicrobial resistance, improving cattle health through technology adoption and vaccine use would be expected to have positive impacts on social acceptability, especially if these improvements rendered milk and meat more affordable to the consumer. Therefore, it is important for cattle producers and allied industry to take a proactive approach to improving cattle health and welfare, with particular focus on diseases that have the greatest implications for sustainability

    A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms

    Get PDF
    Life cycle assessment (LCA) is the preferred methodology to assess carbon footprint per unit of milk. The objective of this case study was to apply a LCA method to compare carbon footprints of high performance confinement and grass-based dairy farms. Physical performance data from research herds were used to quantify carbon footprints of a high performance Irish grass-based dairy system and a top performing UK confinement dairy system. For the USA confinement dairy system, data from the top 5% of herds of a national database were used. Life cycle assessment was applied using the same dairy farm greenhouse gas (GHG) model for all dairy systems. The model estimated all on and off-farm GHG sources associated with dairy production until milk is sold from the farm in kg of carbon dioxide equivalents (CO2-eq) and allocated emissions between milk and meat. The carbon footprint of milk was calculated by expressing the GHG emissions attributed to milk per t of energy corrected milk (ECM). The comparison showed when GHG emissions were only attributed to milk, the carbon footprint of milk from the IRE grass-based system (837 kg of CO2-eq/t of ECM)¬ was 5% lower than the UK confinement system (877 kg of CO2-eq/t of ECM) and 7% lower than the USA confinement system (898 kg of CO2-eq/t of ECM). However, without grassland carbon sequestration, the grass-based and confinement dairy systems had similar carbon footprints per t of ECM. Emission algorithms and allocation of GHG emissions between milk and meat also affected the relative difference and order of dairy system carbon footprints. For instance, depending on the method chosen to allocate emissions between milk and meat, the relative difference between the carbon footprints of grass-based and confinement dairy systems varied by 2-22%. This indicates that further harmonization of several aspects of the LCA methodology is required to compare carbon footprints of contrasting dairy systems. In comparison to recent reports that assess the carbon footprint of milk from average Irish, UK and USA dairy systems, this case study indicates that top performing herds of the respective nations have carbon footprints 27-32% lower than average dairy systems. Although, differences between studies are partly explained by methodological inconsistency, the comparison suggests that there is potential to reduce the carbon footprint of milk in each of the nations by implementing practices that improve productivity

    On the equivalence between Implicit Regularization and Constrained Differential Renormalization

    Full text link
    Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rather distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.Comment: 16 page

    Two-loop scalar self-energies in a general renormalizable theory at leading order in gauge couplings

    Full text link
    I present results for the two-loop self-energy functions for scalars in a general renormalizable field theory, using mass-independent renormalization schemes based on dimensional regularization and dimensional reduction. The results are given in terms of a minimal set of loop-integral basis functions, which are readily evaluated numerically by computers. This paper contains the contributions corresponding to the Feynman diagrams with zero or one vector propagator lines. These are the ones needed to obtain the pole masses of the neutral and charged Higgs scalar bosons in supersymmetry, neglecting only the purely electroweak parts at two-loop order. A subsequent paper will present the results for the remaining diagrams, which involve two or more vector lines.Comment: 26 pages, 4 figures, revtex4, axodraw.sty. Version 2: sentence after eq. (A.13) corrected, references added. Version 3: typos in eqs. (5.17), (5.20), (5.21), (5.32) are corrected. Also, the MSbar versions of eqs. (5.32) and (5.33) are now include

    Current issues and controversies in assessing the environmental impacts of livestock production.

    No full text
    The environment impact of livestock production is one of the most significant issues within agriculture. Global concerns over climate change, resource use, pollution and other environment indicators means that producers must implement practices and systems to reduce environmental impacts, yet this may only be achieved through assessments that allow impacts to be quantified, benchmarked and improved over time. Although environmental indicators are widely accepted, the metrics by which these are assessed continue to evolve over time as assessment objectives gain clarity and focus, and as the science relating to controversial topics (e.g. global warming or carbon sequestration) becomes more refined. however, significant negative trade-offs may occur between different metrics and denominators such that a specific practice or system may appear to have greater or lesser impacts, depending on assessment methodology. A number of tools and models have been developed to empower producers in quantifying environmental impacts, which will be increasingly important is satisfying future consumers' hunger for information as well as food. These tools must be supplied in tandem with information as to the potential consequences of changing management practices and systems. At present however, tools available are based on differing methodologies, are often opaque in their background calculations and do not necessarily account for all the factors that influence environmental impacts from livestock. There is a clear need for robust tools that can be used as standards for assessing environmental impacts from the global livestock industry and that go beyond GHG emissions to produce a more rounded holistic assessment
    corecore