1,834 research outputs found

    RVB Contribution to Superconductivity in MgB2MgB_2

    Full text link
    We view MgB2MgB_2 as electronically equivalent to (non-staggered) graphite (B−B^- layer) that has undergone a zero gap semiconductor to a superconductor phase transition by a large c-axis (chemical) pressure due to Mg++Mg^{++} layers. Further, like the \ppi bonded planar organic molecules, graphite is an old resonating valence bond (RVB) system. The RVB's are the `preexisting cooper pairs' in the `parental' zero gap semiconducting B−B^- (graphite) sheets that manifests themselves as a superconducting ground state of the transformed metal. Some consequences are pointed out.Comment: 4 pages, 2 figure, RevTex. Based on a talk given at the Institute Seminar Week, IMSc, Madras (12-16, Feb. 2001

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure

    ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity

    Get PDF
    AbstractProLuCID, a new algorithm for peptide identification using tandem mass spectrometry and protein sequence databases has been developed. This algorithm uses a three tier scoring scheme. First, a binomial probability is used as a preliminary scoring scheme to select candidate peptides. The binomial probability scores generated by ProLuCID minimize molecular weight bias and are independent of database size. A modified cross-correlation score is calculated for each candidate peptide identified by the binomial probability. This cross-correlation scoring function models the isotopic distributions of fragment ions of candidate peptides which ultimately results in higher sensitivity and specificity than that obtained with the SEQUEST XCorr. Finally, ProLuCID uses the distribution of XCorr values for all of the selected candidate peptides to compute a Z score for the peptide hit with the highest XCorr. The ProLuCID Z score combines the discriminative power of XCorr and DeltaCN, the standard parameters for assessing the quality of the peptide identification using SEQUEST, and displays significant improvement in specificity over ProLuCID XCorr alone. ProLuCID is also able to take advantage of high resolution MS/MS spectra leading to further improvements in specificity when compared to low resolution tandem MS data. A comparison of filtered data searched with SEQUEST and ProLuCID using the same false discovery rate as estimated by a target-decoy database strategy, shows that ProLuCID was able to identify as many as 25% more proteins than SEQUEST. ProLuCID is implemented in Java and can be easily installed on a single computer or a computer cluster.This article is part of a Special Issue entitled: Computational Proteomics

    Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments

    Full text link
    The union of quantum fluids research with nanoscience is rich with opportunities for new physics. The relevant length scales in quantum fluids, 3He in particular, are comparable to those possible using microfluidic and nanofluidic devices. In this article, we will briefly review how the physics of quantum fluids depends strongly on confinement on the microscale and nanoscale. Then we present devices fabricated specifically for quantum fluids research, with cavity sizes ranging from 30 nm to 11 microns deep, and the characterization of these devices for low temperature quantum fluids experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic

    Search for varying constants of nature from astronomical observation of molecules

    Full text link
    The status of searches for possible variation in the constants of nature from astronomical observation of molecules is reviewed, focusing on the dimensionless constant representing the proton-electron mass ratio ÎŒ=mp/me\mu=m_p/m_e. The optical detection of H2_2 and CO molecules with large ground-based telescopes (as the ESO-VLT and the Keck telescopes), as well as the detection of H2_2 with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope is discussed in the context of varying constants, and in connection to different theoretical scenarios. Radio astronomy provides an alternative search strategy bearing the advantage that molecules as NH3_3 (ammonia) and CH3_3OH (methanol) can be used, which are much more sensitive to a varying ÎŒ\mu than diatomic molecules. Current constraints are âˆŁÎ”ÎŒ/ÎŒâˆŁ<5×10−6|\Delta\mu/\mu| < 5 \times 10^{-6} for redshift z=2.0−4.2z=2.0-4.2, corresponding to look-back times of 10-12.5 Gyrs, and âˆŁÎ”ÎŒ/ÎŒâˆŁ<1.5×10−7|\Delta\mu/\mu| < 1.5 \times 10^{-7} for z=0.88z=0.88, corresponding to half the age of the Universe (both at 3σ\sigma statistical significance). Existing bottlenecks and prospects for future improvement with novel instrumentation are discussed.Comment: Contribution to Workshop "High Performance Clocks in Space" at the International Space Science Institute, Bern 201

    Block Spin Density Matrix of the Inhomogeneous AKLT Model

    Full text link
    We study the inhomogeneous generalization of a 1-dimensional AKLT spin chain model. Spins at each lattice site could be different. Under certain conditions, the ground state of this AKLT model is unique and is described by the Valence-Bond-Solid (VBS) state. We calculate the density matrix of a contiguous block of bulk spins in this ground state. The density matrix is independent of spins outside the block. It is diagonalized and shown to be a projector onto a subspace. We prove that for large block the density matrix behaves as the identity in the subspace. The von Neumann entropy coincides with Renyi entropy and is equal to the saturated value.Comment: 20 page

    The NAD +-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status

    Get PDF
    SIRT1, a NAD +-dependent protein deacetylase, is an important regulator in cellular stress response and energy metabolism. While the list of SIRT1 substrates is growing, how the activity of SIRT1 is regulated remains unclear. We have previously reported that SIRT1 is activated by phosphorylation at a conserved Thr 522 residue in response to environmental stress. Here we demonstrate that phosphorylation of Thr 522 activates SIRT1 through modulation of its oligomeric status. We provide evidence that nonphosphorylated SIRT1 protein is aggregation-prone in vitro and in cultured cells. Conversely, phosphorylated SIRT1 protein is largely in the monomeric state and more active. Our findings reveal a novel mechanism for environmental regulation of SIRT1 activity, which may have important implications in understanding the molecular mechanism of stress response, cell survival, and aging

    Entanglement and Density Matrix of a Block of Spins in AKLT Model

    Full text link
    We study a 1-dimensional AKLT spin chain, consisting of spins SS in the bulk and S/2S/2 at both ends. The unique ground state of this AKLT model is described by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a contiguous block of bulk spins in this ground state. It is shown that the density matrix is a projector onto a subspace of dimension (S+1)2(S+1)^{2}. This subspace is described by non-zero eigenvalues and corresponding eigenvectors of the density matrix. We prove that for large block the von Neumann entropy coincides with Renyi entropy and is equal to ln⁥(S+1)2\ln(S+1)^{2}.Comment: Revised version, typos corrected, references added, 31 page

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.
    • 

    corecore