477 research outputs found

    Numerical Test of Disk Trial Wave function for Half-Filled Landau Level

    Full text link
    The analyticity of the lowest Landau level wave functions and the relation between filling factor and the total angular momentum severely limits the possible forms of trial wave functions of a disk of electrons subject to a strong perpendicular magnetic field. For N, the number of electrons, up to 12 we have tested these disk trial wave functions for the half filled Landau level using Monte Carlo and exact diagonalization methods. The agreement between the results for the occupation numbers and ground state energies obtained from these two methods is excellent. We have also compared the profile of the occupation number near the edge with that obtained from a field-theoretical method. The results give qualitatively identical edge profiles. Experimental consequences are briefly discussed.Comment: To be published in Phys. Rev. B. 9 pages, 6 figure

    Hydrous ferric oxide incorporated diatomite for remediation of arsenic contaminated groundwater

    Get PDF
    Two reactive media zerovalent iron (ZVI, Fisher Fe0) and amorphous hydrous ferric oxide (HFO)-incorporated porous, naturally occurring aluminum silicate diatomite designated as Fe (25)-diatomite]], were tested for batch kinetic, pH-controlled differential column batch reactors (DCBRs), in small- and large-scale column tests (about 50 and 900 mL of bed volume) with groundwater from a hazardous waste site containing high concentrations of arsenic (both organic and inorganic species), as well as other toxic or carcinogenic volatile and semivolatile organic compounds (VOC/SVOCs). Granular activated carbon (GAC) was also included as a reactive media since a permeable reactive barrier (PRB) at the subject site would need to address the hazardous VOC/SVOC contamination as well as arsenic. The groundwater contained an extremely high arsenic concentration (341 mg L-1) and the results of ion chromatography and inductively coupled plasma mass spectrometry (IC-ICP-MS) analysis showed that the dominant arsenic species were arsenite (45.1) and monomethyl arsenic acid (MMAA, 22.7), while dimethyl arsenic acid (DMAA) and arsenate were only 2.4 and 1.3, respectively. Based on these proportions of arsenic species and the initial As-to-Fe molar ratio (0.15 molAs molFe-1), batch kinetic tests revealed that the sorption density (0.076 molAs molFe-1) for Fe (25)-diatomite seems to be less than the expected value (0.086 molAs molFe-1) calculated from the sorption density data reported by Lafferty and Loeppert (Environ. Sci. Technol. 2005, 39, 2120-2127), implying that natural organic matters (NOMs) might play a significant role in reducing arsenic removal efficiency. The results of pH-controlled DCBR tests using different synthetic species of arsenic solution showed that the humic acid inhibited the MMAA removal of Fe (25)-diatomite more than arsenite. The mixed system of GAC and Fe (25)-diatomite increased the arsenic sorption speed to more than that of either individual media alone. This increase might be deduced by the fact that the addition of GAC could enhance arsenic removal performance of Fe (25)-diatomite through removing comparably high portions of NOMs. Small- and large-scale column studies demonstrated that the empty bed contact time (EBCT) significantly affected sorpton capacities at breakthrough (C = 0.5 C 0) for the Fe0/sand (50/50, w/w) mixture, but not for GAC preloaded Fe (25)-diatomite. In the large-scale column tests with actual groundwater conditions, the GAC preloaded Fe (25)-diatomite effectively reduced arsenic to below 50 μg L-1 for 44 days; additionally, most species of VOC/SVOCs were also simultaneously attenuated to levels below detection. © 2007 American Chemical Society

    Rationale and design of the dual-energy computed tomography for ischemia determination compared to “gold standard” non-invasive and invasive techniques (DECIDE-Gold) : a multicenter international efficacy diagnostic study of rest-stress dual-energy computed tomography angiography with perfusion

    Get PDF
    Background: Dual-energy CT (DECT) has potential to improve myocardial perfusion for physiologic assessment of coronary artery disease (CAD). Diagnostic performance of rest-stress DECT perfusion (DECTP) is unknown. Objective: DECIDE-Gold is a prospective multicenter study to evaluate the accuracy of DECT to detect hemodynamic (HD) significant CAD, as compared to fractional flow reserve (FFR) as a reference standard. Methods: Eligible participants are subjects with symptoms of CAD referred for invasive coronary angiography (ICA). Participants will undergo DECTP, which will be performed by pharmacological stress, and participants will subsequently proceed to ICA and FFR. HD-significant CAD will be defined as FFR\ua0 64\ua00.80. In those undergoing myocardial stress imaging (MPI) by positron emission tomography (PET), single photon emission computed tomography (SPECT) or cardiac magnetic resonance (CMR) imaging, ischemia will be graded by % ischemic myocardium. Blinded core laboratory interpretation will be performed for CCTA, DECTP, MPI, ICA, and FFR. Results: Primary endpoint is accuracy of DECTP to detect 651 HD-significant stenosis at the subject level when compared to FFR. Secondary and tertiary endpoints are accuracies of combinations of DECTP at the subject and vessel levels compared to FFR and MPI. Conclusion: DECIDE-Gold will determine the performance of DECTP for diagnosing ischemia

    A Sensitivity Approach to Force Calculation in Electrostatic MEMS Devices

    Full text link

    Electronic Structure and Optical Properties of the Co-doped Anatase TiO2_{2} Studied from First Principles

    Full text link
    The Co-doped anatase TiO2_{2}, a recently discovered room-temperature ferromagnetic insulator, has been studied by the first-principles calculations in the pseudo-potential plane-wave formalism within the local-spin-density approximation (LSDA), supplemented by the full-potential linear augmented plane wave (FP-LAPW) method. Emphasis is placed on the dependence of its electronic structures and linear optical properties on the Co-doping concentration and oxygen vacancy in the system in order to pursue the origin of its ferromagnetism. In the case of substitutional doping of Co for Ti, our calculated results are well consistent with the experimental data, showing that Co is in its low spin state. Also, it is shown that the oxygen vacancy enhances the ferromagnetism and has larger effect on both the electronic structure and optical properties than the Co-doping concentration only.Comment: 12 pages, 4 figure

    Development and external validation of a deep learning algorithm for prognostication of cardiovascular outcomes

    Get PDF
    Background and Objectives: We aim to explore the additional discriminative accuracy of a deep learning (DL) algorithm using repeated-measures data for identifying people at high risk for cardiovascular disease (CVD), compared to Cox hazard regression. Methods: Two CVD prediction models were developed from National Health Insurance Service-Health Screening Cohort (NHIS-HEALS): A Cox regression model and a DL model. Performance of each model was assessed in the internal and 2 external validation cohorts in Koreans (National Health Insurance Service-National Sample Cohort; NHIS-NSC) and in Europeans (Rotterdam Study). A total of 412,030 adults in the NHIS-HEALS; 178,875 adults in the NHIS-NSC; and the 4,296 adults in Rotterdam Study were included. Results: Mean ages was 52 years (46% women) and there were 25,777 events (6.3%) in NHIS-HEALS during the follow-up. In internal validation, the DL approach demonstrated a C-statistic of 0.896 (95% confidence interval, 0.886-0.907) in men and 0.921 (0.908-0.934) in women and improved reclassification compared with Cox regression (net reclassification index [NRI], 24.8% in men, 29.0% in women). In external validation with NHIS-NSC, DL demonstrated a C-statistic of 0.868 (0.860-0.876) in men and 0.889 (0.876-0.898) in women, and improved reclassification compared with Cox regression (NRI, 24.9% in men, 26.2% in women). In external validation applied to the Rotterdam Study, DL demonstrated a C-statistic of 0.860 (0.824-0.897) in men and 0.867 (0.830-0.903) in women, and improved reclassification compared with Cox regression (NRI, 36.9% in men, 31.8% in women). Conclusions: A DL algorithm exhibited greater discriminative accuracy than Cox model approaches

    On the existence of a Bose Metal at T=0

    Full text link
    This paper aims to justify, at a microscopic level, the existence of a two-dimensional Bose metal, i.e. a metallic phase made out of Cooper pairs at T=0. To this end, we consider the physics of quantum phase fluctuations in (granular) superconductors in the absence of disorder and emphasise the role of two order parameters in the problem, viz. phase order and charge order. We focus on the 2-d Bose Hubbard model in the limit of very large fillings, i.e. a 2-d array of Josephson junctions. We find that the algebra of phase fluctuations is that of the Euclidean group E2E_{2} in this limit, and show that the model is equivalent to two coupled XY models in (2+1)-d, one corresponding to the phase degrees of freedom, and the other the charge degrees of freedom. The Bose metal, then, is the phase in which both these degrees of freedom are disordered(as a result of quantum frustration). We analyse the model in terms of its topological excitations and suggest that there is a strong indication that this state represents a surface of critical points, akin to the gapless spin liquid states. We find a remarkable consistency of this scenario with certain low-T_c thin film experiments.Comment: 16 pages, 2 figure

    Computer simulation of the sheath and the adjacent plasma in the presence of a plasma source

    Get PDF
    A model is constructed allowing computer simulations of the near-wall area of a planar plasma sheet in conditions where the steady state of the plasma is supported by the production of charged particles in a region removed from the wall. Calculations have revealed variation in the energy distribution of the electrons in both time and spatially over the sheet width (cooling the electronic component) due to absorption of fast electrons at the walls bounding the plasma volume. It is shown that the plasma density profile across the sheet width has an abrupt decrease at the boundary of the region of plasma regulation. Thus the standard concepts of the potential and plasma density distributions in the sheath and presheath based on the assumption of a stable energy distribution for the electrons in the presheath yields inaccurate results for the plasma sheet where the ionization source is remote from the wall
    corecore