11 research outputs found
Resetting the Stress System with a Mifepristone Challenge
Psychotic depression is characterized by elevated circulating cortisol, and high daily doses of the glucocorticoid/progesterone antagonist mifepristone for 1 week are required for significant improvement. Using a rodent model, we find that such high doses of mifepristone are needed because the antagonist is rapidly degraded and poorly penetrates the blood-brain barrier, but seems to facilitate the entry of cortisol. We also report that in male C57BL/6J mice, after a 7-day treatment with a high dose of mifepristone, basal blood corticosterone levels were similar to that of vehicle controls. This is surprising because after the first mifepristone challenge, corticosterone remained elevated for about 16 h, and then decreased towards vehicle control levels at 24 h. At that time, stress-induced corticosterone levels of the 1xMIF were sevenfold higher than the 7xMIF group, the latter response being twofold lower than controls. The 1xMIF mice showed behavioral hyperactivity during exploration of the circular hole board, while the 7xMIF mice rather engaged in serial search patterns. To explain this rapid reset of corticosterone secretion upon recurrent mifepristone administration, we suggest the following: (i) A rebound glucocorticoid feedback after cessation of mifepristone treatment. (ii) Glucocorticoid agonism in transrepression and recruitment of cell-specific coregulator cocktails. (iii) A more prominent role of brain MR function in control of stress circuit activity. An overview table of neuroendocrine MIF effects is provided. The data are of interest for understanding the mechanistic underpinning of stress system reset as treatment strategy for stress-related diseases.Diabetes mellitus: pathophysiological changes and therap
Acute effects of neonatal dexamethasone treatment on proliferation and astrocyte immunoreactivity in hippocampus and corpus callosum: Towards a rescue strategy.
Dexamethasone (DEX), a synthetic glucocorticoid, has been used to treat respiratory distress syndrome in prematurely born infants. Despite the important short-term benefit on lung function, there is growing concern about the long-term outcome of this treatment, since follow-up studies of prematurely born infants have shown lasting adverse neurodevelopmental effects. Since the mechanism underlying these neurodevelopmental impairments is largely unknown, the aim of the present study was (i) to investigate the acute effects of neonatal DEX treatment on the developing brain; and (ii) to block specifically the effects of DEX on the brain by central administration of the glucocorticoid receptor (GR) antagonist mifepristone. Long Evans rat pups were injected subcutaneously with tapering doses of DEX or saline (SAL) on postnatal days (pnd) 1, 2 and 3. Separate groups received intracerebroventricular injections with mifepristone prior to DEX treatment. On pnd 4 and 10, pups were sacrificed and brains collected for analysis of cell proliferation (Ki-67) and astrogliosis (GFAP). We report that neonatal DEX treatment reduced hippocampal cell proliferation on pnd 4, an effect that was normalized by pnd 10. Although on pnd 4, GFAP expression was not affected, DEX treatment caused a significant reduction in the number and density of astrocytes in hippocampus and corpus callosum on pnd 10, which was normalized by mifepristone pre-treatment. These acute alterations in the neonate brain might underlie later functional impairments reported in DEX-treated animals and humans and further illustrate the impact of early GR activation on brain development
A Mixed Glucocorticoid/Mineralocorticoid Selective Modulator With Dominant Antagonism in the Male Rat Brain
Item does not contain fulltextAdrenal glucocorticoid hormones are potent modulators of brain function in the context of acute and chronic stress. Both mineralocorticoid (MRs) and glucocorticoid receptors (GRs) can mediate these effects. We studied the brain effects of a novel ligand, C118335, with high affinity for GRs and modest affinity for MRs. In vitro profiling of receptor-coregulator interactions suggested that the compound is a "selective modulator" type compound for GRs that can have both agonistic and antagonistic effects. Its molecular profile for MRs was highly similar to those of the full antagonists spironolactone and eplerenone. C118335 showed predominantly antagonistic effects on hippocampal mRNA regulation of known glucocorticoid target genes. Likewise, systemic administration of C118335 blocked the GR-mediated posttraining corticosterone-induced enhancement of memory consolidation in an inhibitory avoidance task. Posttraining administration of C118335, however, gave a strong and dose-dependent impairment of memory consolidation that, surprisingly, reflected involvement of MRs and not GRs. Finally, C118335 treatment acutely suppressed the hypothalamus-pituitary-adrenal axis as measured by plasma corticosterone levels. Mixed GR/MR ligands, such as C118335, can be used to unravel the mechanisms of glucocorticoid signaling. The compound is also a prototype of mixed GR/MR ligands that might alleviate the harmful effects of chronic overexposure to endogenous glucocorticoids.10 p
Glucocorticoid receptors signaling impairment potentiates amyloid-beta oligomers-induced pathology in an acute model of Alzheimer's disease
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid receptors (GR) signaling impairment. However, the precise role of GR in the pathophysiology of AD remains unclear. Using an acute model of AD induced by the intracerebroventricular injection of amyloid-beta oligomers (oA beta), we analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, processing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in AD and involved in HPA axis control and cognitive functions. We found that oA beta impaired cognitive and emotional behaviors, increased plasma GC levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oA beta potentiated the amyloidogenic pathway and enzymes involved both in Tau hyperphosphorylation and GR activation. Treatment with a selective GR modulator (sGRm) normalized plasma GC levels and all behavioral and biochemical parameters analyzed. GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology of AD, in perturbing A beta and Tau homeostasis. These results also reinforce the therapeutic potential of sGRm in AD.Diabetes mellitus: pathophysiological changes and therap
Identification of a selective glucocorticoid receptor modulator that prevents both diet-induced obesity and inflammation
Functional Genomics of Systemic Disorder
Selective Glucocorticoid Receptor Modulation Prevents and Reverses Nonalcoholic Fatty Liver Disease in Male Mice
Medication for nonalcoholic fatty liver disease (NAFLD) is an unmet need. Glucocorticoid (GC) stress hormones drive fat metabolism in the liver, but both full blockade and full stimulation of GC signaling aggravate NAFLD pathology. We investigated the efficacy of selective glucocorticoid receptor (GR) modulator CORT118335, which recapitulates only a subset of GC actions, in reducing liver lipid accumulation in mice. Male C57BL/6J mice received a low-fat diet or high-fat diet mixed with vehicle or CORT118335. Livers were analyzed histologically and for genome-wide mRNA expression. Functionally, hepatic long-chain fatty acid (LCFA) composition was determined by gas chromatography. We determined very-low-density lipoprotein (VLDL) production by treatment with a lipoprotein lipase inhibitor after which blood was collected to isolate radiolabeled VLDL particles and apoB proteins. CORT118335 strongly prevented and reversed hepatic lipid accumulation. Liver transcriptome analysis showed increased expression of GR target genes involved in VLDL production. Accordingly, CORT118335 led to increased lipidation of VLDL particles, mimicking physiological GC action. Independent pathway analysis revealed that CORT118335 lacked induction of GC-responsive genes involved in cholesterol synthesis and LCFA uptake, which was indeed reflected in unaltered hepatic LCFA uptake in vivo. Our data thus reveal that the robust hepatic lipid-lowering effect of CORT118335 is due to a unique combination of GR-dependent stimulation of lipid (VLDL) efflux from the liver, with a lack of stimulation of GR-dependent hepatic fatty acid uptake. Our findings firmly demonstrate the potential use of CORT118335 in the treatment of NAFLD and underscore the potential of selective GR modulation in metabolic disease.UB – Publicatie